Datasets:
File size: 10,695 Bytes
2aebe1a a22e847 911f627 a22e847 911f627 a22e847 37bf227 a22e847 37bf227 a22e847 37bf227 a22e847 37bf227 a22e847 37bf227 a22e847 37bf227 a22e847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import datasets
from datasets.tasks import AutomaticSpeechRecognition
import os
_CITATION = """\
@inproceedings{panayotov2015librispeech,
title={Myspeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
"""
_DESCRIPTION = """\
MySpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
"""
_URL = "http://www.openslr.org/12"
_DL_URL = "/content/drive/MyDrive/"
_DL_URLS = {
"clean": {
"dev": _DL_URL + "dev-other.tar.gz",
"test": _DL_URL + "dev-other.tar.gz",
"train.100": _DL_URL + "dev-other.tar.gz",
"train.360": _DL_URL + "dev-other.tar.gz",
},
"other": {
"test": _DL_URL + "dev-other.tar.gz",
"dev": _DL_URL + "dev-other.tar.gz",
"train.500": _DL_URL + "dev-other.tar.gz",
},
"all": {
"dev.clean": _DL_URL + "dev-other.tar.gz",
"dev.other": _DL_URL + "dev-other.tar.gz",
"test.clean": _DL_URL + "dev-other.tar.gz",
"test.other": _DL_URL + "dev-other.tar.gz",
"train.clean.100": _DL_URL + "dev-other.tar.gz",
"train.clean.360": _DL_URL + "dev-other.tar.gz",
"train.other.500": _DL_URL + "dev-other.tar.gz",
},
}
class MyspeechASRConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(MyspeechASRConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class MyspeechASR(datasets.GeneratorBasedBuilder):
"""Librispeech dataset."""
DEFAULT_WRITER_BATCH_SIZE = 256
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
MyspeechASRConfig(name="clean", description="'Clean' speech."),
MyspeechASRConfig(name="other", description="'Other', more challenging, speech."),
MyspeechASRConfig(name="all", description="Combined clean and other dataset."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_DL_URLS[self.config.name])
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
if self.config.name == "clean":
train_splits = [
datasets.SplitGenerator(
name="train.100",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.100"),
"files": dl_manager.iter_archive(archive_path["train.100"]),
},
),
datasets.SplitGenerator(
name="train.360",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.360"),
"files": dl_manager.iter_archive(archive_path["train.360"]),
},
),
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev"),
"files": dl_manager.iter_archive(archive_path["dev"]),
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test"),
"files": dl_manager.iter_archive(archive_path["test"]),
},
)
]
elif self.config.name == "other":
train_splits = [
datasets.SplitGenerator(
name="train.500",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.500"),
"files": dl_manager.iter_archive(archive_path["train.500"]),
},
)
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev"),
"files": dl_manager.iter_archive(archive_path["dev"]),
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test"),
"files": dl_manager.iter_archive(archive_path["test"]),
},
)
]
elif self.config.name == "all":
train_splits = [
datasets.SplitGenerator(
name="train.clean.100",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.clean.100"),
"files": dl_manager.iter_archive(archive_path["train.clean.100"]),
},
),
datasets.SplitGenerator(
name="train.clean.360",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.clean.360"),
"files": dl_manager.iter_archive(archive_path["train.clean.360"]),
},
),
datasets.SplitGenerator(
name="train.other.500",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.other.500"),
"files": dl_manager.iter_archive(archive_path["train.other.500"]),
},
),
]
dev_splits = [
datasets.SplitGenerator(
name="validation.clean",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("validation.clean"),
"files": dl_manager.iter_archive(archive_path["dev.clean"]),
},
),
datasets.SplitGenerator(
name="validation.other",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("validation.other"),
"files": dl_manager.iter_archive(archive_path["dev.other"]),
},
),
]
test_splits = [
datasets.SplitGenerator(
name="test.clean",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test.clean"),
"files": dl_manager.iter_archive(archive_path["test.clean"]),
},
),
datasets.SplitGenerator(
name="test.other",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test.other"),
"files": dl_manager.iter_archive(archive_path["test.other"]),
},
),
]
return train_splits + dev_splits + test_splits
def _generate_examples(self, files, local_extracted_archive):
"""Generate examples from a LibriSpeech archive_path."""
key = 0
audio_data = {}
transcripts = []
for path, f in files:
if path.endswith(".flac"):
id_ = path.split("/")[-1][: -len(".flac")]
audio_data[id_] = f.read()
elif path.endswith(".trans.txt"):
for line in f:
if line:
line = line.decode("utf-8").strip()
id_, transcript = line.split(" ", 1)
audio_file = f"{id_}.flac"
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
audio_file = (
os.path.join(local_extracted_archive, audio_file)
if local_extracted_archive
else audio_file
)
transcripts.append(
{
"id": id_,
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"file": audio_file,
"text": transcript,
}
)
if audio_data and len(audio_data) == len(transcripts):
for transcript in transcripts:
audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
yield key, {"audio": audio, **transcript}
key += 1
audio_data = {}
transcripts = []
|