Datasets:
Tasks:
Image-Text-to-Text
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
License:
import json | |
import os | |
def convert_training_data(input_path, output_path): | |
""" | |
Convert draft training data to a format acceptable for model fine-tuning. | |
Ensure demo images, questions, and answers are included, and query does not include an answer. | |
Args: | |
input_path (str): Path to the input draft JSON file. | |
output_path (str): Path to save the converted JSON file. | |
""" | |
with open(input_path, 'r', encoding='utf-8') as f: | |
raw_data = json.load(f) | |
converted_data = [] | |
for sample in raw_data: | |
id = sample["id"] | |
user_messages = [] | |
assistant_message = sample["conversations"][-1]["value"] | |
# Add instruction | |
user_messages.append({ | |
"type": "text", | |
"text": "Learn from the demos and give only the answer to the final question." | |
}) | |
# Process user content (images, questions, and answers) | |
user_content = sample["conversations"][0]["value"] | |
lines = user_content.split("\n") | |
for line in lines: | |
if line.startswith("Picture"): | |
# Extract image path | |
image_path = line.split("<img>")[1].split("</img>")[0] | |
user_messages.append({"type": "image", "image": image_path}) | |
elif line.startswith("Question"): | |
question_text = line | |
user_messages.append({"type": "text", "text": question_text}) | |
elif line.startswith("Answer"): | |
answer_text = line | |
if answer_text.strip() != "Answer: ": | |
# Append answer only if it's part of the demo | |
user_messages[-1]["text"] += f" {answer_text}\n" | |
# Construct final sample | |
converted_sample = { | |
"id": id, | |
"messages": [ | |
{"role": "user", "content": user_messages}, | |
{"role": "assistant", "content": [{"type": "text", "text": assistant_message}]} | |
] | |
} | |
converted_data.append(converted_sample) | |
# Save converted data | |
with open(output_path, 'w', encoding='utf-8') as f: | |
json.dump(converted_data, f, ensure_ascii=False, indent=4) | |
print(f"Converted data saved to {output_path}") | |
# Example usage | |
if __name__ == "__main__": | |
input_file = "./draft_training_data.json" # Replace with your draft file path | |
output_file = "./processed_training_data.json" # Replace with your desired output file path | |
convert_training_data(input_file, output_file) | |