Datasets:
Upload ASyMOB_Generation.py
Browse files- ASyMOB_Generation.py +348 -0
ASyMOB_Generation.py
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import json
|
| 3 |
+
import sympy as sp
|
| 4 |
+
import re
|
| 5 |
+
import random
|
| 6 |
+
import itertools
|
| 7 |
+
|
| 8 |
+
# Load CSV file containing seed questions and maximal symbolic perturbations.
|
| 9 |
+
csv_file_path = 'Seed_and_Max_Symbolic_Perturbations.csv'
|
| 10 |
+
|
| 11 |
+
with open(csv_file_path, 'r', encoding='utf-8') as cf:
|
| 12 |
+
data = list(csv.DictReader(cf)) # Read CSV into list of dicts
|
| 13 |
+
cur_data_len = len(data)
|
| 14 |
+
print("Length of initial data: ", cur_data_len) # Print initial dataset size
|
| 15 |
+
|
| 16 |
+
# Define symbolic variables that appear in the symbolic perturbations - and will be replaced by various expressions during variant generation.
|
| 17 |
+
x, A, B, F, G, H, N = sp.symbols('x A B F G H N', real=True)
|
| 18 |
+
Q = sp.symbols('Q', real=True, positive=True)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Define symbolic perturbation characters and their corresponding sympy symbols
|
| 22 |
+
symnoise_char_list = ['A', 'B', 'F', 'G', 'H']
|
| 23 |
+
symnoise_sym_list = [A, B, F, G, H]
|
| 24 |
+
local_sym_dict = {'x': x, 'A': A, 'B': B, 'F': F, 'G': G, 'H': H, 'N': N, 'Q': Q}
|
| 25 |
+
|
| 26 |
+
# These sources contain explicit hypergeometric functions, which are marked by 'F' - so 'F' is not treated as a symbolic perturbation character.
|
| 27 |
+
# The hg_ variables below represent this special treatment.
|
| 28 |
+
hypergeomatric_question_sources = ["ASyMOB\nHypergeometrics\nQ1", "ASyMOB\nHypergeometrics\nQ2", "ASyMOB\nHypergeometrics\nQ3", "ASyMOB\nHypergeometrics\nQ4"]
|
| 29 |
+
hg_symnoise_char_list = ['A', 'B', 'G', 'H']
|
| 30 |
+
hg_symnoise_sym_list = [A, B, G, H]
|
| 31 |
+
hg_local_sym_dict = {'x': x, 'A': A, 'B': B, 'G': G, 'H': H, 'N': N, 'Q': Q}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# List of easy equivalent forms (should simplify to 1)
|
| 35 |
+
equivalent_forms_easy = [
|
| 36 |
+
sp.sin(-Q*x)**2 + sp.cos(Q*x)**2,
|
| 37 |
+
-sp.sinh(Q*x)**2 + sp.cosh(Q*x)**2,
|
| 38 |
+
(sp.log(x) * sp.log(Q,x))/sp.log(Q),
|
| 39 |
+
Q * sp.Sum( x / (Q * 2**N) , (N, 1, sp.oo)) / x,
|
| 40 |
+
(sp.exp(sp.I * Q * x) - sp.exp(-sp.I * Q * x)) / (2 * sp.I * sp.sin(Q * x))
|
| 41 |
+
]
|
| 42 |
+
# List of hard equivalent forms (should simplify to 1)
|
| 43 |
+
equivalent_forms_hard = [
|
| 44 |
+
(sp.tan((Q-1)*x) + sp.tan(x)) / ((1 - sp.tan((Q-1)*x) * sp.tan(x)) * sp.tan(Q*x)),
|
| 45 |
+
sp.sinh(sp.log(Q*x + sp.sqrt((Q*x)**2 + 1))) / (Q*x),
|
| 46 |
+
(sp.log(x / sp.E, Q) + sp.log(sp.E, Q))/ sp.log(x, Q),
|
| 47 |
+
Q * sp.Sum( (6 * x) / (Q * (N * sp.pi)**2) , (N, 1, sp.oo)) / x,
|
| 48 |
+
-((1 + sp.exp(4 * sp.I * Q * x)) / (1 - sp.exp(4 * sp.I * Q * x))) * (2 * sp.tan(Q*x) / ((1 - sp.tan(Q*x)**2)) * sp.I)
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# Test that all equivalent forms simplify to 1 and are numerically close to 1.
|
| 52 |
+
# Note that some expressions above do not simplify to 1 by sp.simplify - due to the CAS's limitations - but are evaluated correctly to 1 numerically.
|
| 53 |
+
# We still print the warning to raise user awareness.
|
| 54 |
+
equivalence_test_x = -2.5
|
| 55 |
+
equivalence_test_Q = 0.5
|
| 56 |
+
equivalence_test_margin = 1e-4
|
| 57 |
+
for form in (equivalent_forms_easy + equivalent_forms_hard):
|
| 58 |
+
# Check if the form is equivalent to 1
|
| 59 |
+
if sp.simplify(form) != 1 or (abs(form.subs(Q, equivalence_test_Q).subs(x, equivalence_test_x).evalf() - 1) > equivalence_test_margin):
|
| 60 |
+
print(f"Form {form} is not equivalent to 1")
|
| 61 |
+
print(f"{form} is simplified to {sp.simplify(form)}")
|
| 62 |
+
print("Form is numerically evaluated to: ", form.subs(Q, equivalence_test_Q).subs(x, equivalence_test_x).evalf())
|
| 63 |
+
|
| 64 |
+
# LaTeX representations of the easy and hard equivalent forms
|
| 65 |
+
eq_forms_latex_easy = [
|
| 66 |
+
r'\sin^{2}{\left(- Q x \right)} + \cos^{2}{\left(Q x \right)}',
|
| 67 |
+
r'- \sinh^{2}{\left(Q x \right)} + \cosh^{2}{\left(Q x \right)}',
|
| 68 |
+
r'\frac{\ln(x) \cdot \log_{x}(Q)}{\ln(Q)}',
|
| 69 |
+
r'\frac{Q \sum_{N=1}^{\infty} \frac{2^{- N} x}{Q}}{x}',
|
| 70 |
+
r'- \frac{i \left(e^{i Q x} - e^{- i Q x}\right)}{2 \sin{\left(Q x \right)}}']
|
| 71 |
+
eq_forms_latex_hard = [
|
| 72 |
+
r'\frac{\tan{\left(x \right)} + \tan{\left(x \left(Q - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(Q - 1\right) \right)} + 1\right) \tan{\left(Q x \right)}}',
|
| 73 |
+
r'\frac{\sinh{\left(\log{\left(Q x + \sqrt{Q^{2} x^{2} + 1} \right)} \right)}}{Q x}',
|
| 74 |
+
r'\frac{\log_Q\left(\frac{x}{e}\right) + \log_Q(e)}{\log_Q(x)}',
|
| 75 |
+
r'\frac{Q \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} Q}}{x}',
|
| 76 |
+
r'- \frac{2 i \left(e^{4 i Q x} + 1\right) \tan{\left(Q x \right)}}{\left(1 - e^{4 i Q x}\right) \left(1 - \tan^{2}{\left(Q x \right)}\right)}']
|
| 77 |
+
|
| 78 |
+
def replace_in_dollars(s, old, new):
|
| 79 |
+
# Replace 'old' with 'new' inside all $...$ math substrings in s
|
| 80 |
+
def repl(match):
|
| 81 |
+
return match.group(0).replace(old, new)
|
| 82 |
+
return re.sub(r'\$(.*?)\$', repl, s)
|
| 83 |
+
|
| 84 |
+
def char_in_dollars(s, char):
|
| 85 |
+
"""Return True if char appears inside any $...$ substring in s."""
|
| 86 |
+
matches = re.findall(r'\$(.*?)\$', s)
|
| 87 |
+
return any(char in match for match in matches)
|
| 88 |
+
|
| 89 |
+
def check_for_problematic_symbols(sp_ans):
|
| 90 |
+
"""Check for problematic symbols in sp_ans, but allow infinities if they are only used as summation or integration limits."""
|
| 91 |
+
# Check for NaN or zoo anywhere
|
| 92 |
+
if sp_ans.has(sp.nan) or sp_ans.has(sp.zoo):
|
| 93 |
+
return True
|
| 94 |
+
# Check for oo or -oo not as summation/integration limits
|
| 95 |
+
def has_bad_infinity(expr):
|
| 96 |
+
# If it's a Sum or Integral, skip limits
|
| 97 |
+
if isinstance(expr, (sp.Sum, sp.Integral)):
|
| 98 |
+
# expr.limits is a tuple of tuples: (symbol, lower, upper)
|
| 99 |
+
# Only check the function part, not the limits
|
| 100 |
+
return has_bad_infinity(expr.function)
|
| 101 |
+
# If it's an infinity itself, it's problematic
|
| 102 |
+
if expr == sp.oo or expr == -sp.oo:
|
| 103 |
+
return True
|
| 104 |
+
# Recursively check args
|
| 105 |
+
return any(has_bad_infinity(arg) for arg in getattr(expr, 'args', []))
|
| 106 |
+
return has_bad_infinity(sp_ans)
|
| 107 |
+
|
| 108 |
+
# Generate symbolic and numeric variants for each item in the dataset
|
| 109 |
+
def generate_variants(items, symnoise_chars, symnoise_syms, sym_dict, cur_ind):
|
| 110 |
+
next_ind = cur_ind
|
| 111 |
+
new_items = []
|
| 112 |
+
for item in items:
|
| 113 |
+
latex_chall = item.get("Challenge")
|
| 114 |
+
sp_sym_ans = sp.sympify(item.get("Answer in Sympy"), locals = sym_dict)
|
| 115 |
+
source = item.get("Source")
|
| 116 |
+
chars_in_latex = []
|
| 117 |
+
syms_in_latex = []
|
| 118 |
+
# Find which symbolic perturbation characters are present in the LaTeX challenge
|
| 119 |
+
for i in range(len(symnoise_chars)):
|
| 120 |
+
if char_in_dollars(latex_chall, symnoise_chars[i]):
|
| 121 |
+
chars_in_latex.append(symnoise_chars[i])
|
| 122 |
+
syms_in_latex.append(symnoise_syms[i])
|
| 123 |
+
if len(chars_in_latex) == 0:
|
| 124 |
+
print("No symbolic parameters found inside math expressions in source: ",source)
|
| 125 |
+
|
| 126 |
+
item['Variation'] = f"Symbolic-{len(chars_in_latex)}"
|
| 127 |
+
|
| 128 |
+
# Replace all symbols in symnoise_sym_list by 1 for equivalence perturbation answers.
|
| 129 |
+
sp_sym_ans_ones = sp_sym_ans.subs(dict(zip(symnoise_syms, [1]*len(symnoise_syms))))
|
| 130 |
+
# Check for problematic symbols in sp_sym_ans_ones
|
| 131 |
+
if check_for_problematic_symbols(sp_sym_ans_ones):
|
| 132 |
+
print(f"Warning: sp_sym_ans_ones for {item} contains problematic symbol(s): {sp_sym_ans_ones}")
|
| 133 |
+
|
| 134 |
+
# Generate all permutations of easy/hard equivalent forms for all symbolic chars
|
| 135 |
+
ordered_sets = list(itertools.permutations(range(len(eq_forms_latex_easy)), len(chars_in_latex)))
|
| 136 |
+
for order in ordered_sets:
|
| 137 |
+
# Substitute easy forms
|
| 138 |
+
latex_chall_copy = latex_chall
|
| 139 |
+
for i in range(len(chars_in_latex)):
|
| 140 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + eq_forms_latex_easy[order[i]].replace('Q', chars_in_latex[i]) + r'\right) ' )
|
| 141 |
+
next_ind += 1
|
| 142 |
+
new_items.append({
|
| 143 |
+
"Index": str(next_ind),
|
| 144 |
+
"Challenge": latex_chall_copy,
|
| 145 |
+
"Answer in Sympy": str(sp_sym_ans_ones),
|
| 146 |
+
"Answer in Latex": "",
|
| 147 |
+
"Variation": "Equivalence-All-Easy",
|
| 148 |
+
"Source": source
|
| 149 |
+
})
|
| 150 |
+
# Substitute hard forms
|
| 151 |
+
latex_chall_copy = latex_chall
|
| 152 |
+
for i in range(len(chars_in_latex)):
|
| 153 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + eq_forms_latex_hard[order[i]].replace('Q', chars_in_latex[i]) + r'\right) ' )
|
| 154 |
+
next_ind += 1
|
| 155 |
+
new_items.append({
|
| 156 |
+
"Index": str(next_ind),
|
| 157 |
+
"Challenge": latex_chall_copy,
|
| 158 |
+
"Answer in Sympy": str(sp_sym_ans_ones),
|
| 159 |
+
"Answer in Latex": "",
|
| 160 |
+
"Variation": "Equivalence-All-Hard",
|
| 161 |
+
"Source": source
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
+
# Generate single-symbolic substitutions (easy/hard) and numeric perturbation variants
|
| 165 |
+
for i in range(len(chars_in_latex)):
|
| 166 |
+
chars_left_in_latex = chars_in_latex.copy()
|
| 167 |
+
chars_left_in_latex.pop(i)
|
| 168 |
+
for j in range(len(eq_forms_latex_easy)):
|
| 169 |
+
# Substitute one easy form
|
| 170 |
+
latex_chall_copy = latex_chall
|
| 171 |
+
replace_form = r' \left(' + eq_forms_latex_easy[j].replace('Q', chars_in_latex[i]) + r'\right) '
|
| 172 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], replace_form )
|
| 173 |
+
for ch in chars_left_in_latex:
|
| 174 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, ch, '')
|
| 175 |
+
next_ind += 1
|
| 176 |
+
new_items.append({
|
| 177 |
+
"Index": str(next_ind),
|
| 178 |
+
"Challenge": latex_chall_copy,
|
| 179 |
+
"Answer in Sympy": str(sp_sym_ans_ones),
|
| 180 |
+
"Answer in Latex": "",
|
| 181 |
+
"Variation": "Equivalence-One-Easy",
|
| 182 |
+
"Source": source
|
| 183 |
+
})
|
| 184 |
+
# Substitute one hard form
|
| 185 |
+
latex_chall_copy = latex_chall
|
| 186 |
+
replace_form = r' \left(' + eq_forms_latex_hard[j].replace('Q', chars_in_latex[i]) + r'\right) '
|
| 187 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], replace_form)
|
| 188 |
+
for ch in chars_left_in_latex:
|
| 189 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, ch, '')
|
| 190 |
+
next_ind += 1
|
| 191 |
+
new_items.append({
|
| 192 |
+
"Index": str(next_ind),
|
| 193 |
+
"Challenge": latex_chall_copy,
|
| 194 |
+
"Answer in Sympy": str(sp_sym_ans_ones),
|
| 195 |
+
"Answer in Latex": "",
|
| 196 |
+
"Variation": "Equivalence-One-Hard",
|
| 197 |
+
"Source": source
|
| 198 |
+
})
|
| 199 |
+
|
| 200 |
+
# Numeric perturbation: replace one symbol with a random integer of increasing digit length
|
| 201 |
+
for noise_digits in range(1, 11):
|
| 202 |
+
latex_chall_copy = latex_chall
|
| 203 |
+
sp_sym_ans_copy = sp_sym_ans
|
| 204 |
+
nn1 = random.randint(10**(noise_digits-1), 10**noise_digits - 1)
|
| 205 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn1), evaluate=False)
|
| 206 |
+
while check_for_problematic_symbols(sp_sym_ans_copy):
|
| 207 |
+
print(f"Warning: Numeric-One noise for {item} contains problems: {sp_sym_ans_copy}. Retrying")
|
| 208 |
+
nn1 = random.randint(10**(noise_digits-1), 10**noise_digits - 1)
|
| 209 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn1), evaluate=False)
|
| 210 |
+
replace_form = r' \left(' + str(nn1) + r'\right) '
|
| 211 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], replace_form)
|
| 212 |
+
for ch in chars_left_in_latex:
|
| 213 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, ch, '')
|
| 214 |
+
for sym in syms_in_latex:
|
| 215 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(sym, 1)
|
| 216 |
+
latex_chall_copy = re.sub(r'Assume.*?\.', '', latex_chall_copy)
|
| 217 |
+
next_ind += 1
|
| 218 |
+
new_items.append({
|
| 219 |
+
"Index": str(next_ind),
|
| 220 |
+
"Challenge": latex_chall_copy,
|
| 221 |
+
"Answer in Sympy": str(sp_sym_ans_copy),
|
| 222 |
+
"Answer in Latex": "",
|
| 223 |
+
"Variation": f"Numeric-One-{noise_digits}",
|
| 224 |
+
"Source": source
|
| 225 |
+
})
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Numeric perturbation: replace all symbols with random integers of increasing digit length
|
| 229 |
+
for noise_digits in range(1, 11):
|
| 230 |
+
latex_chall_copy = latex_chall
|
| 231 |
+
sp_sym_ans_copy = sp_sym_ans
|
| 232 |
+
nn_lst = [random.randint(10**(noise_digits-1), 10**noise_digits - 1) for _ in range(len(chars_in_latex))]
|
| 233 |
+
for i in range(len(chars_in_latex)):
|
| 234 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False)
|
| 235 |
+
while check_for_problematic_symbols(sp_sym_ans_copy):
|
| 236 |
+
print(f"Warning: Numeric-All noise for {item} contains problems: {sp_sym_ans_copy}. Retrying")
|
| 237 |
+
nn_lst = [random.randint(10**(noise_digits-1), 10**noise_digits - 1) for _ in range(len(chars_in_latex))]
|
| 238 |
+
for i in range(len(chars_in_latex)):
|
| 239 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False)
|
| 240 |
+
for i in range(len(chars_in_latex)):
|
| 241 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + str(nn_lst[i]) + r'\right) ' )
|
| 242 |
+
|
| 243 |
+
# Remove "Assume ... ." clause from latex_chall if it exists
|
| 244 |
+
latex_chall_copy = re.sub(r'Assume.*?\.', '', latex_chall_copy)
|
| 245 |
+
|
| 246 |
+
# Add new item with rolling index
|
| 247 |
+
next_ind += 1
|
| 248 |
+
new_items.append({
|
| 249 |
+
"Index": str(next_ind),
|
| 250 |
+
"Challenge": latex_chall_copy,
|
| 251 |
+
"Answer in Sympy": str(sp_sym_ans_copy),
|
| 252 |
+
"Answer in Latex": "",
|
| 253 |
+
"Variation": f"Numeric-All-{noise_digits}",
|
| 254 |
+
"Source": source
|
| 255 |
+
})
|
| 256 |
+
|
| 257 |
+
# Generate variants with some symbols replaced by 1 (partial symbolic)
|
| 258 |
+
for i in range(1, len(chars_in_latex)):
|
| 259 |
+
oned_indexes = list(itertools.combinations(range(len(chars_in_latex)), i))
|
| 260 |
+
for oned_set in oned_indexes:
|
| 261 |
+
latex_chall_copy = latex_chall
|
| 262 |
+
sp_sym_ans_copy = sp_sym_ans
|
| 263 |
+
for ind in oned_set:
|
| 264 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[ind], '')
|
| 265 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[ind], 1)
|
| 266 |
+
next_ind += 1
|
| 267 |
+
new_items.append({
|
| 268 |
+
"Index": str(next_ind),
|
| 269 |
+
"Challenge": latex_chall_copy,
|
| 270 |
+
"Answer in Sympy": str(sp_sym_ans_copy),
|
| 271 |
+
"Answer in Latex": "",
|
| 272 |
+
"Variation": f"Symbolic-{len(chars_in_latex) - i}",
|
| 273 |
+
"Source": source
|
| 274 |
+
})
|
| 275 |
+
# Add new_items to data before writing output
|
| 276 |
+
data.extend(new_items)
|
| 277 |
+
|
| 278 |
+
# Generate 'Numeric-All-2-S' variants - the 'Variance' subset
|
| 279 |
+
def generate_NA2S(items, symnoise_chars, symnoise_syms, sym_dict, cur_ind, noise_digits, reps_num):
|
| 280 |
+
next_ind = cur_ind
|
| 281 |
+
new_items = []
|
| 282 |
+
|
| 283 |
+
for item in items:
|
| 284 |
+
latex_chall = item.get("Challenge")
|
| 285 |
+
sp_sym_ans = sp.sympify(item.get("Answer in Sympy"), locals = sym_dict)
|
| 286 |
+
source = item.get("Source")
|
| 287 |
+
chars_in_latex = []
|
| 288 |
+
syms_in_latex = []
|
| 289 |
+
# Find which symbolic noise characters are present in the LaTeX challenge
|
| 290 |
+
for i in range(len(symnoise_chars)):
|
| 291 |
+
if char_in_dollars(latex_chall, symnoise_chars[i]):
|
| 292 |
+
chars_in_latex.append(symnoise_chars[i])
|
| 293 |
+
syms_in_latex.append(symnoise_syms[i])
|
| 294 |
+
if len(chars_in_latex) == 0:
|
| 295 |
+
print("No symbolic parameters found inside math expressions in source: ",source)
|
| 296 |
+
|
| 297 |
+
for _ in range(reps_num):
|
| 298 |
+
latex_chall_copy = latex_chall
|
| 299 |
+
sp_sym_ans_copy = sp_sym_ans
|
| 300 |
+
# Generate random integer values for all symbolic chars
|
| 301 |
+
nn_lst = [random.randint(10**(noise_digits-1), 10**(noise_digits) - 1) for _ in range(len(chars_in_latex))]
|
| 302 |
+
for i in range(len(chars_in_latex)):
|
| 303 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False)
|
| 304 |
+
|
| 305 |
+
while check_for_problematic_symbols(sp_sym_ans_copy):
|
| 306 |
+
print(f"Warning: Numeric-All noise for {item} contains problems: {sp_sym_ans_copy}. Retrying")
|
| 307 |
+
nn_lst = [random.randint(10**(noise_digits-1), 10**noise_digits - 1) for _ in range(len(chars_in_latex))]
|
| 308 |
+
for i in range(len(chars_in_latex)):
|
| 309 |
+
sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False)
|
| 310 |
+
|
| 311 |
+
for i in range(len(chars_in_latex)):
|
| 312 |
+
latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + str(nn_lst[i]) + r'\right) ' )
|
| 313 |
+
|
| 314 |
+
# Remove "Assume ... ." clause from latex_chall if it exists
|
| 315 |
+
latex_chall_copy = re.sub(r'Assume.*?\.', '', latex_chall_copy)
|
| 316 |
+
next_ind += 1
|
| 317 |
+
new_items.append({
|
| 318 |
+
"Index": str(next_ind),
|
| 319 |
+
"Challenge": latex_chall_copy,
|
| 320 |
+
"Answer in Sympy": str(sp_sym_ans_copy),
|
| 321 |
+
"Answer in Latex": "",
|
| 322 |
+
"Variation": f"Numeric-All-{noise_digits}-S",
|
| 323 |
+
"Source": source
|
| 324 |
+
})
|
| 325 |
+
# Add new_items to data before writing output
|
| 326 |
+
data.extend(new_items)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
# Split items into regular and hypergeometric symbolic questions
|
| 330 |
+
sym_var_items = [item for item in data if (item.get('Variation', '').strip() == 'Symbolic' and item.get('Source') not in hypergeomatric_question_sources)]
|
| 331 |
+
hypergeometric_sym_var_items = [item for item in data if (item.get('Variation', '').strip() == 'Symbolic' and item.get('Source') in hypergeomatric_question_sources)]
|
| 332 |
+
|
| 333 |
+
# Generate all variants for regular and hypergeometric items
|
| 334 |
+
generate_variants(sym_var_items, symnoise_char_list, symnoise_sym_list, local_sym_dict, cur_data_len)
|
| 335 |
+
cur_data_len = len(data)
|
| 336 |
+
generate_variants(hypergeometric_sym_var_items, hg_symnoise_char_list, hg_symnoise_sym_list, hg_local_sym_dict, cur_data_len)
|
| 337 |
+
cur_data_len = len(data)
|
| 338 |
+
generate_NA2S(sym_var_items, symnoise_char_list, symnoise_sym_list, local_sym_dict, cur_data_len, 2, 50)
|
| 339 |
+
cur_data_len = len(data)
|
| 340 |
+
generate_NA2S(hypergeometric_sym_var_items, hg_symnoise_char_list, hg_symnoise_sym_list, hg_local_sym_dict, cur_data_len, 2, 50)
|
| 341 |
+
cur_data_len = len(data)
|
| 342 |
+
print("Final size of the ASyMOB dataset is: " ,cur_data_len)
|
| 343 |
+
|
| 344 |
+
# Write the full dataset to a JSON file
|
| 345 |
+
output_json_path = 'Full_ASyMOB_Dataset.json'
|
| 346 |
+
with open(output_json_path, 'w', encoding='utf-8') as jf:
|
| 347 |
+
json.dump(data, jf, ensure_ascii=False, indent=2)
|
| 348 |
+
|