Datasets:
				
			
			
	
			
			
	
		
		File size: 35,158 Bytes
			
			672a413  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496  | 
								Index,Challenge,Answer in Latex,Answer in Sympy,Variation,Source
1,Compute the first 5 nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $ f(x) = e^{\sin(x)} $,1+x+\frac{x^2}{2}-\frac{x^4}{8}-\frac{x^5}{15}+\cdots,-x**5/15 - x**4/8 + x**2/2 + x + 1,Original,"U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764"
2,Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$,\sum_{n=2}^\infty\left(\frac{1}{6}\cdot n\cdot\left(n^2-1\right)\cdot x^n\right),"Sum(n*x**n*(n**2 - 1), (n, 2, oo))/6",Original,"U-Math
sequences_series
fb6418ae-3440-4258-9388-89d799fd859a"
3,Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \sin(x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)$,\frac{1}{34560\cdot\sqrt{2}}\cdot\left(288\cdot x^5+1440\cdot x^4-5760\cdot x^3-17280\cdot x^2+34560\cdot x+34560\right),sqrt(2)*(x**5 + 5*x**4 - 20*x**3 - 60*x**2 + 120*x + 120)/240,Original,"U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921"
4,Compute the first 4 nonzero terms of the Maclaurin series of $f(x) = e^x \cdot \cos(x)$,1+x-\frac{x^3}{3}-\frac{x^4}{6},-x**4/6 - x**3/3 + x + 1,Original,"U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1"
5,Compute $\lim_{x \to 0}\left(\frac{ 2 \cdot \cos(x)+4 }{ 5 \cdot x^3 \cdot \sin(x) }-\frac{ 6 }{ 5 \cdot x^4 }\right)$,\frac{1}{150},1/150,Original,"U-Math
sequences_series
068e40ce-9108-4ef8-8ee5-0d1471ebbe43"
6,Evaluate $\lim_{x \to 0^{+}}\left(\left(\frac{ \tan\left(\frac{ x }{ 2 }\right) }{ \frac{ x }{ 2 } }\right)^{\frac{ 3 }{ x^2 }}\right)$,$e^{\frac{1}{4}}$,exp(1/4),Original,"U-Math
differential_calc
363dd580-f1fc-4867-a6ef-db2a03139745"
7,"Evaluate
$ \lim_{x \to 5} \left( \frac{ 3 \cdot x }{ x-5 }-\frac{ 3 }{ \ln\left(\frac{ x }{ 5 }\right) } \right) $",\frac{3}{2},3/2,Original,"U-Math
differential_calc
2d799998-115a-489b-a48b-57090954303e"
8,"Evaluate
$ \lim_{x \to \infty} \left(x - x^2 \cdot \ln\left(1 + \frac{ 1 }{ x }\right)\right) $",\frac{1}{2},1/2,Original,"U-Math
differential_calc
efdc4110-cf56-4f37-bf54-40fdd5d58145"
9,"Evaluate
$ \lim_{x \to 0^{+}} \left( \left( \frac{ \tan(2 \cdot x) }{ 2 \cdot x } \right)^{\frac{ 1 }{ 3 \cdot x^2 }} \right) $",e^{\frac{4}{9}},e**(4/9),Original,"U-Math
differential_calc
99a2304d-5d8e-4245-90da-a80651ca15d8"
10,"Evaluate
$ \lim_{x \to 0}\left( \left| \frac{ -\sin(x) }{ x } \right| \right)^{\frac{ 1 }{ 4 \cdot x^2 }} $",e^{\frac{-1}{24}},e**(-1/24),Original,"U-Math
differential_calc
84c6a419-c103-41d5-aad5-dd8e690c6e88"
11,"Integrate 
$ \int \sin(x)^4 \cdot \cos(x)^6 dx $",$C+\frac{1}{320}\cdot\left(\sin(2\cdot x)\right)^5+\frac{1}{128}\cdot\left(\frac{3\cdot x}{2}-\frac{\sin(4\cdot x)}{2}+\frac{\sin(8\cdot x)}{16}\right)$,C + 3*x/256 + sin(2*x)**5/320 - sin(4*x)/256 + sin(8*x)/2048,Original,"U-Math
integral_calc
0c0ba3db-1470-4c36-975c-91ff5f51986f"
12,"Calculate the integral:
$
\int \frac{ \sqrt[5]{x}+\sqrt[5]{x^4}+x \cdot \sqrt[5]{x} }{ x \cdot \left(1+\sqrt[5]{x^2}\right) }   dx
$",C+5\cdot\arctan\left(\sqrt[5]{x}\right)+\frac{5}{4}\cdot\sqrt[5]{x}^4,C + 5*x**(4/5)/4 + 5*atan(x**(1/5)),Original,"U-Math
integral_calc
126c4165-b3d5-4470-8412-08e79d9821cf"
13,"Solve the integral:
$
\int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) }   dx
$",C+\ln\left(\left|\tan(x)\right|\right)-\frac{3}{2\cdot\left(\tan(x)\right)^2}-\frac{3}{4\cdot\left(\tan(x)\right)^4}-\frac{1}{6\cdot\left(\tan(x)\right)^6},C + log(Abs(tan(x))) - 3 / (2 * tan(x)**2) - 3 / (4 * tan(x)**4) - 1 / (6 * tan(x)**6),Original,"U-Math
integral_calc
00f6affb-905a-4109-a78e-2dde7a0b83accf"
14,"Compute the integral:
$
-2 \cdot \int x^{-4} \cdot \left(4+x^2\right)^{\frac{ 1 }{ 2 }}   dx
$",C+\frac{1}{6}\cdot\left(\frac{4}{x^2}+1\right)\cdot\sqrt{\frac{4}{x^2}+1},(C*x**2 + sqrt((x**2 + 4)/x**2)*(x**2 + 4)/6)/x**2,Original,"U-Math
integral_calc
05ea9929-8cbb-432b-bbbb-ec1e74c9f401"
15,"Solve the integral:
$
\int \left(\frac{ x+4 }{ x-4 } \right)^{\frac{ 3 }{ 2 }}   dx
$",C+\sqrt{\frac{x+4}{x-4}}\cdot(x-20)-12\cdot\ln\left(\left|\frac{\sqrt{x-4}-\sqrt{x+4}}{\sqrt{x-4}+\sqrt{x+4}}\right|\right),C + sqrt((x + 4)/(x - 4)) * (x - 20) - 12 * ln(Abs((sqrt(x - 4) - sqrt(x + 4)) / (sqrt(x - 4) + sqrt(x + 4)))),Original,"U-Math
integral_calc
08c72d46-1abd-49e1-9c9c-ce509902be6e"
16,Compute the integral: $ \int \frac{ -1 }{ x^2 \cdot \left(3+x^3\right)^{\frac{ 5 }{ 3 }} }   dx $,\frac{1}{9}\cdot\sqrt[3]{1+\frac{3}{x^3}}+\frac{1}{18\cdot\left(1+\frac{3}{x^3}\right)^{\frac{2}{3}}},(x**3 + 2)/(6*x**3*(1 + 3/x**3)**(2/3)),Original,"U-Math
integral_calc
4c1292e1-d4b3-4acf-afaf-eaac62f2662d"
17,"Compute the integral:
$ \int \frac{ 4 \cdot x+\sqrt{4 \cdot x-5} }{ 5 \cdot \sqrt[4]{4 \cdot x-5}+\sqrt[4]{(4 \cdot x-5)^3} }   dx $",C+25\cdot\sqrt[4]{4\cdot x-5}+\frac{1}{5}\cdot\sqrt[4]{4\cdot x-5}^5-\frac{4}{3}\cdot\sqrt[4]{4\cdot x-5}^3-\frac{125}{\sqrt{5}}\cdot\arctan\left(\frac{1}{\sqrt{5}}\cdot\sqrt[4]{4\cdot x-5}\right),C + (4*x - 5)**(5/4)/5 - 4*(4*x - 5)**(3/4)/3 + 25*(4*x - 5)**(1/4) - 25*sqrt(5)*atan(sqrt(5)*(4*x - 5)**(1/4)/5),Original,"U-Math
integral_calc
147944c5-b782-48c5-a664-d66deb92d9a7"
18,"Solve the integral:
$
\int \frac{ 3 }{ \sin(2 \cdot x)^7 \cdot \cos(-2 \cdot x) }   dx
$",C+\frac{3}{2}\cdot\left(\ln\left(\left|\tan(2\cdot x)\right|\right)-\frac{3}{2\cdot\left(\tan(2\cdot x)\right)^2}-\frac{3}{4\cdot\left(\tan(2\cdot x)\right)^4}-\frac{1}{6\cdot\left(\tan(2\cdot x)\right)^6}\right),"C + (3/2) * (log(Abs(tan(2*x))) - 3/(2 * tan(2*x)**2) - 3/(4 * tan(2*x)**4) - 1/(6 * tan(2*x)**6)
)",Original,"U-Math
integral_calc
1db212f0-2fac-410d-969d-fe3b5b55d076"
19,"Solve the integral:
$
\int \frac{ 1 }{ \sin(8 \cdot x)^5 }   dx
$",C+\frac{1}{128}\cdot\left(2\cdot\left(\tan(4\cdot x)\right)^2+6\cdot\ln\left(\left|\tan(4\cdot x)\right|\right)+\frac{1}{4}\cdot\left(\tan(4\cdot x)\right)^4-\frac{2}{\left(\tan(4\cdot x)\right)^2}-\frac{1}{4\cdot\left(\tan(4\cdot x)\right)^4}\right),"C + Rational(1, 128) * (2 * tan(4 * x)**2 + 6 * log(Abs(tan(4 * x))) + Rational(1, 4) * tan(4 * x)**4 - 2 / tan(4 * x)**2 - 1 / (4 * tan(4 * x)**4))",Original,"U-Math
integral_calc
275f7ceb-f331-4a3f-96ec-346e6d81b32a"
20,"Evaluate the integral:
$
I = \int \left(x^3 + 3\right) \cdot \cos(2 \cdot x)   dx
$",\frac{1}{256}\cdot\left(384\cdot\sin(2\cdot x)+128\cdot x^3\cdot\sin(2\cdot x)+192\cdot x^2\cdot\cos(2\cdot x)-96\cdot\cos(2\cdot x)-256\cdot C-192\cdot x\cdot\sin(2\cdot x)\right),-C + x**3*sin(2*x)/2 + 3*x**2*cos(2*x)/4 - 3*x*sin(2*x)/4 + 3*sin(2*x)/2 - 3*cos(2*x)/8,Original,"U-Math
integral_calc
47a11349-0386-4969-9263-d3cdfcc98cb9"
21,"Use factoring to calculate the following limit.
$ \lim_{x \rightarrow K} \frac {{x}^4-K^4} {{x}^5-K^5} $",\frac{4}{5 K},4/(5*K),Original,"UGMathBench
Calculus_-_single_variable_0016"
22,Find the limit. $ \lim_{x \to 0} \frac{1-\cos\!\left(10x\right)}{\cos^{2}\!\left(6x\right)-1}$,\frac{-25}{18},-25/18,Original,"UGMathBench
Calculus_-_single_variable_0022"
23,Evaluate the limit. $ \lim_{x\to 1} \dfrac{x^2+11x-12}{\ln x}=$,13,13,Original,"UGMathBench
Calculus_-_single_variable_0508"
24,"Evaluate the limit below, given that $f(t)=\left(\frac{4^t+6^t}{4}\right)^{1/t}$. $\lim\limits_{t\to+\infty} f(t)$",6,6,Original,"UGMathBench
Calculus_-_single_variable_0512"
25,Calculate the integral. $\int_{2}^{\infty} 3x^{2}e^{-x^{3}}  dx=$,\frac{1}{e^{8}},e**(-8),Original,"UGMathBench
Calculus_-_single_variable_0592"
26,Evaluate the indefinite integral. $\int \tan^{3}\!\left(x\right)\sec^{9}\!\left(x\right)   dx$,\frac{\sec^{11}{\left(x \right)}}{11} - \frac{\sec^{9}{\left(x \right)}}{9},sec(x)**11/11 - sec(x)**9/9,Original,"UGMathBench
Calculus_-_single_variable_0604"
27,"Evaluate the indefinite integral.
$\int 208 \cos^4(16x) dx$",78 x + \frac{13 \sin{\left(16 x \right)} \cos^{3}{\left(16 x \right)}}{4} + \frac{39 \sin{\left(16 x \right)} \cos{\left(16 x \right)}}{8},78*x + 13*sin(16*x)*cos(16*x)**3/4 + 39*sin(16*x)*cos(16*x)/8,Original,"UGMathBench
Calculus_-_single_variable_0606"
28,"Evaluate the integral.
$ \int \frac{10x^2-48x-38}{x^3-5x^2-8x+48} dx $",\frac{2 \left(\left(x - 4\right) \left(3 \log{\left(\left|{x - 4}\right| \right)} + 2 \log{\left(\left|{x + 3}\right| \right)}\right) + 5\right)}{x - 4} ,2*((x - 4)*(3*log(Abs(x - 4)) + 2*log(Abs(x + 3))) + 5)/(x - 4),Original,"UGMathBench
Calculus_-_single_variable_0612"
29,Evaluate the integral. $ \int e^{x}\sqrt{64-e^{2x}} \;dx$ $=$,\frac{e^{x} \sqrt{64 - e^{2 x}}}{2} + 32 \operatorname{asin}{\left(\frac{e^{x}}{8} \right)},e**x*sqrt(64 - e**(2*x))/2 + 32*asin(e**x/8),Original,"UGMathBench
Calculus_-_single_variable_0624"
30,Evaluate $\lim_{x \to 0} \frac{e^{-3x^3}-1+3x^3-\frac{9}{2}x^6}{12x^9}$,\frac{-3}{8},-3/8,Original,"UGMathBench
Calculus_-_single_variable_0939"
31,"Solve the following first-order differential equation:
$
\frac{dy}{dx} + 2y = e^{-x}, \quad y(0) = 1.
$",e^{-x},e**(-x),Original,"MathOdyssey
Problem 340 from Differential Equations - College Math"
32,Consider the differential equation $\frac{dy}{dx} = xy$. Find the value of $y(\sqrt{2})$ given that $y(0) = 2$.,2e,2*e,Original,"MathOdyssey
Problem 339 from Differential Equations - College Math"
33,"Evaluate the following limit:
$
\lim_{n \to \infty} \left(\sqrt{n^2+2n-1}-\sqrt{n^2+3}\right).
$",1,1,Original,"MathOdyssey
Problem 315 from Calculus and Analysis - College Math"
34,Evaluate $\lim\limits_{x\to 4}\frac{x-4}{\sqrt{x}-2}$.,4,4,Original,"MathOdyssey
Problem 317 from Calculus and Analysis - College Math"
35,Evaluate $\displaystyle{\int_0^4(2x-\sqrt{16-x^2})dx}$.,16 - 4 \pi,16 - 4*pi,Original,"MathOdyssey
Problem 325 from Calculus and Analysis - College Math"
36,Evaluate the series $\sum\limits_{n=1}^\infty\frac{1}{(n+1)(n+3)}$.,\frac{5}{12},5/12,Original,"MathOdyssey
Problem 326 from Calculus and Analysis - College Math"
37,Evaluate the limit $\lim\limits_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-e}{x}$.,-\frac{ e}{2},-e/2,Original,"MathOdyssey
Problem 327 from Calculus and Analysis - College Math"
38,Evaluate the series $\sum\limits_{n=0}^\infty \frac{1}{2n+1}\left(\frac12\right)^{2n+1}$.,\ln\sqrt{3},log(3)/2,Original,"MathOdyssey
Problem 328 from Calculus and Analysis - College Math"
39,Evaluate the limit $\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1}{\sqrt{n^2-k^2}}$.,\frac{\pi}{2},pi/2,Original,"MathOdyssey
Problem 329 from Calculus and Analysis - College Math"
40,Evaluate the iterated integral $\displaystyle{\int_0^1dy\int_y^1(e^{-x^2}+e^x)dx}$.,\frac{3}{2}-\frac12 e^{-1},(3*e - 1)/(2*e),Original,"MathOdyssey
Problem 336 from Calculus and Analysis - College Math"
41,What is the integral of $ 2x - x^7atan(3) $,x^2-\frac{1}{8} x^8 \tan ^{-1}(3),-x**8*atan(3)/8 + x**2,Original,"GHOSTS 
Symbolic Integration
Q97"
42,What is the integral of $ 1 + x + x^3*cosh(2) $,\frac{1}{4} x^4 \cosh (2)+\frac{x^2}{2}+x,x**4*cosh(2)/4 + x**2/2 + x,Original,"GHOSTS 
Symbolic Integration
Q98"
43,What is the integral of $ 12 + 6cosh(x) $,12 x + 6 \sinh{\left(x \right)},12*x + 6*sinh(x),Original,"GHOSTS 
Symbolic Integration
Q90"
44,What is the integral of 4x^7 + sin(1 + x),\frac{x^8}{2} - \cos(1+x) ,x**8/2 - cos(x + 1),Original,"GHOSTS 
Symbolic Integration
Q14"
45,What is the integral of 2x + 2x^2 + x[(x + x*e^x)^-1],\frac{2 x^3}{3}+x^2-2 \tanh ^{-1}\left(2 e^x+1\right),2*x**3/3 + x**2 + x - log(exp(x) + 1),Original,"GHOSTS 
Symbolic Integration
Q7"
46,What is the integral of -x + cos[ln(sin(3))] * ln(3x),-\frac{1}{2} x (x-2 \log (3 x) \cos (\log (\sin (3)))+2 \cos (\log (\sin (3)))),"-1*x*((x - 2*log(3*x, E)*cos(log(sin(3), E))) + 2*cos(log(sin(3), E)))/2",Original,"GHOSTS 
Symbolic Integration
Q15"
47,What is the integral of 3x - 4*[cos(x+3)]*x^2,\frac{3 x^2}{2}-4 \left(x^2-2\right) \sin (x+3)-8 x \cos (x+3),-8*x*cos(x + 3) + ((3*x**2)/2 - 4*(x**2 - 2)*sin(x + 3)),Original,"GHOSTS 
Symbolic Integration
Q18"
48,What is the integral of -3 + atan(x) + ln(tanh(3)),x \arctan(x) - \frac{1}{2} \ln(1 + x^2) + x \ln(\tanh(3)) - 3x + C,x*atan(x) - 3*x + x*log(tanh(3)) - log(x**2 + 1)/2,Original,"GHOSTS 
Symbolic Integration
Q20"
49,What is the integral of e^{x \left(x + 4\right)^{2}} \left(x + 4\right) \left(3 x + 4\right),e^{x (x+4)^2},e**(x*(x + 4)**2),Original,"GHOSTS 
Symbolic Integration
Q22"
50,What is the integral of -e^{3x} * sin(e^{3x}),\frac{1}{3} \cos \left(e^{3 x}\right),cos(e**(3*x))/3,Original,"GHOSTS 
Symbolic Integration
Q29"
51,"If $\log _{2} x-2 \log _{2} y=2$, determine $y$, as a function of $x$",\frac{1}{2} \sqrt{x},sqrt(x)/2,Original,"OlympiadBench
oe_to_maths_en_comp
2498"
52,"If $f(x)=2 x+1$ and $g(f(x))=4 x^{2}+1$, determine an expression for $g(x)$.",x^2-2 x+2,x**2 - 2*x + 2,Original,"OlympicArena
Math_1381"
53,Solve the following integral $\int_0^{\frac{\pi}{2}} \frac{x \sin(2x)}{1 + \cos^2(2x)}   dx$,Pi^2 / 16,Pi**2 / 16,Original,OBMU 2019 - Q21
54,"Solve the following integral:
$\int_{1}^{2} \frac{e^x(x - 1)}{x(x + e^x)}   dx$ ",\ln\left( \frac{2 + e^2}{2 + 2e} \right),"log((e**2 + 2)/(2*e + 2), E)",Original,OBMU 2019 - Q18
55,"Solve the following integral:
$\int_{0}^{\pi} \log(\sin(x))   dx$",-\pi \log (2),"-pi*log(2, E)",Original,OBMU 2019 - Q22
56,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1,1\ \\ 2 \end{array}; -1 \right) $",\log (2),"log(2, E)",Original,"ASyMOB
Hypergeometrics
Q1"
57,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1,1 \\ 3 \end{array}; -2 \right) $",\frac{3 \log (3)}{2}-1,"-1 + (3*log(3, E))/2",Original,"ASyMOB
Hypergeometrics
Q2"
58,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_3F_2\left( \begin{array}{c} 1,1,1 \\ 2,2 \end{array}; -1 \right) $",\frac{\pi ^2}{12},pi**2/12,Original,"ASyMOB
Hypergeometrics
Q3"
59,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_3F_2\left( \begin{array}{c} -1,-1,-1 \\ -1,-1 \end{array}; x \right) $",1-x,1-x,Original,"ASyMOB
Hypergeometrics
Q4"
60,"Solve the following integral. Return a closed-form symbolic answer.
\int \frac{ 1 }{ 1 + x^3 }   dx",-\frac{1}{6} \log \left(x^2-x+1\right)+\frac{1}{3} \log (x+1)+\frac{\tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)}{\sqrt{3}},"(log(x + 1, E)/3 - 1*log((x**2 - x) + 1, E)/6) + atan((2*x - 1)/(sqrt(3)))/(sqrt(3))",Original,"ASyMOB
Hypergeometrics
Q5"
61,"Solve the following integral.
\int \frac{(4 + (4 - 1)x^1)x^{2-1}}{2(1 + x^1 + x^{4})\sqrt{1 + x^1}} dx",\tan ^{-1}\left(\frac{x^2}{\sqrt{x+1}}\right),atan(x**2/sqrt(x + 1)),Original,"ASyMOB
Hypergeometrics
Q6"
62,"Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) =  A e^{B \sin(x)} $, where A and B are symbolic constants.","\frac{1}{6} A \left(B^3-B\right) x^3+\frac{1}{2} A B^2 x^2+\frac{1}{120} A \left(B^5-10 B^3+B\right) x^5+\frac{1}{24} A
   \left(B^4-4 B^2\right) x^4+A B x+A",A*B**2*x**2/2 + A*B*x + A + x**5*A*(B**5 - 10*B**3 + B)/120 + x**4*A*(B**4 - 4*B**2)/24 + x**3*A*(B**3 - B)/6,Symbolic,"U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764"
63,Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(A n \cdot (F x)^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(B n \cdot (F x)^n\right$,\sum_{n=2}^\infty \frac{1}{6} A B n \left(n^2-1\right) F^n \cdot x^n,"A*B*Sum(F**n*x**n*n*(n**2 - 1), (n, 2, oo))/6",Symbolic,"U-Math
sequences_series
fb6418ae-3440-4258-9388-89d799fd859a"
64,Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin(A x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$,"\frac{1}{120} A^5 F x^5 \cos \left(\frac{\pi  B}{4}\right)+\frac{1}{24} A^4 F x^4 \sin \left(\frac{\pi 
   B}{4}\right)-\frac{1}{6} A^3 F x^3 \cos \left(\frac{\pi  B}{4}\right)-\frac{1}{2} A^2 F x^2 \sin \left(\frac{\pi 
   B}{4}\right)+A F x \cos \left(\frac{\pi  B}{4}\right)+F \sin \left(\frac{\pi  B}{4}\right)",F*(A**5*x**5*cos(B*pi/4) + 5*A**4*x**4*sin(B*pi/4) - 20*A**3*x**3*cos(B*pi/4) - 60*A**2*x**2*sin(B*pi/4) + 120*A*x*cos(B*pi/4) + 120*sin(B*pi/4))/120,Symbolic,"U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921"
65,Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = F e^{A x} \cdot \cos(B x)$,"F x^3 \left(\frac{A^3}{6}-\frac{A B^2}{2}\right)+\frac{1}{2} F x^2 \left(A^2-B^2\right)+F x^4 \left(\frac{A^4}{24}-\frac{A^2
   B^2}{4}+\frac{B^4}{24}\right)+A F x+F",F*(4*A*x**3*(A**2 - 3*B**2) + 24*A*x + x**4*(A**4 - 6*A**2*B**2 + B**4) + 12*x**2*(A**2 - B**2) + 24)/24,Symbolic,"U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1"
66,Compute $\lim_{x \to 0}\frac{(2 \cos (F x)+4) \csc (F x)}{5 A (F x)^3}-\frac{6}{5 A (F x)^4}$,\frac{1}{A 150},1/(150*A),Symbolic,"U-Math
sequences_series
068e40ce-9108-4ef8-8ee5-0d1471ebbe43"
67,"Evaluate 
$ \lim_{x \to 0^+} A \left( \frac{ \tan\left( \frac{B x}{2} \right) }{ \frac{B x}{2} } \right)^{ \frac{F 3}{(B x)^2} } $",$A /cdot e^{\frac{F}{4}}$,A*e**(F/4),Symbolic,"U-Math
differential_calc
363dd580-f1fc-4867-a6ef-db2a03139745"
68,"Evaluate
$ \lim_{x \to A 5} \left( \frac{ 3 B x }{ x - 5 A }-\frac{ 3 B }{ \ln\left(\frac{ x }{ 5 A }\right) } \right)^{F} $
",\left( \frac{3B}{2} \right)^F,(3*B/2)**F,Symbolic,"U-Math
differential_calc
2d799998-115a-489b-a48b-57090954303e"
69,"Evaluate
$ \lim_{x \to \infty} \left(A x - A F x^2 \cdot \ln\left(1 + \frac{ 1 }{ F x }\right)\right)^(1 B) $
",\left(\frac{A}{2 F}\right)^{B},(A/(2*F))**B,Symbolic,"U-Math
differential_calc
efdc4110-cf56-4f37-bf54-40fdd5d58145"
70,"Evaluate
$ \lim_{x \to 0^+} F \left( \frac{\tan(A x)}{A x} \right)^{\frac{1 H}{3 B x^2}} $",F e^{\frac{A^{2} H}{9 B}},F*e**((A**2*H)/((9*B))),Symbolic,"U-Math
differential_calc
99a2304d-5d8e-4245-90da-a80651ca15d8"
71,"Evaluate 
$ \lim_{x \to 0} \left| F \left( \frac{-\sin(A x)}{A x} \right)^{\frac{1}{4 B x^2}} \right| $",\left( e^{-\frac{A^2}{6B}} \right)^{\frac{1}{4}} \left| F \right|,"(exp(-A**2 / (6 * B)))**Rational(1, 4) * Abs(F)",Symbolic,"U-Math
differential_calc
84c6a419-c103-41d5-aad5-dd8e690c6e88"
72,"Integrate
$ \int B \sin(F x)^4 \cdot \cos(F x)^6 dx $",\frac{\frac{B \sin{\left(2 F x \right)}}{512} - \frac{B \sin{\left(4 F x \right)}}{256} - \frac{B \sin{\left(6 F x \right)}}{1024} + \frac{B \sin{\left(8 F x \right)}}{2048} + \frac{B \sin{\left(10 F x \right)}}{5120} + \frac{F x \left(256 A + 3 B\right)}{256}}{F},(3*B*x)/256 + (B*sin(2*F*x))/(512*F) - (B*sin(4*F*x))/(256*F) - (B*sin(6*F*x))/(1024*F) + (B*sin(8*F*x))/(2048*F) + (B*sin(10*F*x))/(5120*F),Symbolic ,"U-Math
integral_calc
0c0ba3db-1470-4c36-975c-91ff5f51986f"
73,"Solve the following integral. Assume A,B,F,G are real and positive.
$ \int \frac{A \sqrt[5]{x} + B x^{4/5} + F x^{6/5}}{x \left(1 G+x^{2/5}\right)}   dx $","\frac{5}{4} \left(\frac{4 A \tan ^{-1}\left(\frac{\sqrt[5]{x}}{\sqrt{G}}\right)}{\sqrt{G}}+2 x^{2/5} (B-F G)+2 G (F G-B) \log
   \left(G+x^{2/5}\right)+F x^{4/5}\right)","(5/4)*(F*x**(4/5) + ((2*(x**(2/5)*(B - F*G)) + (4*(A*atan(x**(1/5)/(sqrt(G)))))/(sqrt(G))) + 2*(G*(-B + F*G)*log(G + x**(2/5), E))))",Symbolic,"U-Math
integral_calc
126c4165-b3d5-4470-8412-08e79d9821cf"
74,"Solve the following integral. Assume A,B,F are real and positive
$ \int \frac{A \csc ^7(F x) \sec (F x)}{1 B}   dx $",-\frac{A \left(2 \csc ^6(F x)+3 \csc ^4(F x)+6 \csc ^2(F x)+12 (\log (\cos (F x))-\log (\sin (F x)))\right)}{12 B F},-A*(-12*log(sin(F*x)) + 12*log(cos(F*x)) + 2*csc(F*x)**6 + 3*csc(F*x)**4 + 6*csc(F*x)**2)/(12*B*F),Symbolic,"U-Math
integral_calc
00f6affb-905a-4109-a78e-2dde7a0b83accf"
75,"Solve the following integral. Assume A,B,F are real and positive.
$ \int -\frac{2 A \sqrt{4 B + (F x)^2}}{ (F x)^4}   dx $",\frac{A \left(4 B+F^2 x^2\right)^{3/2}}{6 B F^4 x^3},A*(4*B + F**2*x**2)**(3/2)/(6*B*F**4*x**3),Symbolic,"U-Math
integral_calc
05ea9929-8cbb-432b-bbbb-ec1e74c9f401"
76,"Solve the following integral. Assume A,B,F are real and positive.
$ \int \left(\frac{B (4 A + F x)}{F x - 4 A}\right)^{3/2}   dx $","\frac{B \sqrt{\frac{B (4 A+F x)}{F x-4 A}} \left(\sqrt{4 A+F x} (F x-20 A)+24 A \sqrt{F x-4 A} \tanh ^{-1}\left(\frac{\sqrt{4
   A+F x}}{\sqrt{F x-4 A}}\right)\right)}{F \sqrt{4 A+F x}}",B*sqrt(-B*(4*A + F*x)/(4*A - F*x))*(24*A*sqrt(-4*A + F*x)*atanh(sqrt(4*A + F*x)/sqrt(-4*A + F*x)) + (-20*A + F*x)*sqrt(4*A + F*x))/(F*sqrt(4*A + F*x)),Symbolic,"U-Math
integral_calc
08c72d46-1abd-49e1-9c9c-ce509902be6e"
77,"Solve the following integral. Assume A,B,F,G are real and positive.
$ \int \frac{ -1 A }{B (F x)^2 \cdot \left(3 G + (F x)^3\right)^{\frac{ 5 }{ 3 }} }   dx $",\frac{A \left(F^3 x^3+2 G\right)}{6 B F^2 G^2 x \left(F^3 x^3+3 G\right)^{2/3}},A*(F**3*x**3 + 2*G)/(6*B*F**2*G**2*x*(F**3*x**3 + 3*G)**(2/3)),Symbolic,"U-Math
integral_calc
4c1292e1-d4b3-4acf-afaf-eaac62f2662d"
78,"Solve the following integral. Assume A,B,F,G,H are real and positive.
$ \int \frac{\sqrt{4 A x-5 B}+4 F x}{5 G \sqrt[4]{4 A x - 5 B} + H (4 A x - 5 B)^{3/4}}   dx $","\frac{\frac{\sqrt{H} \left(20 A^2 H^2 x+375 F G^2 \sqrt{4 A x-5 B}+5 B H \left(12 F H \sqrt{4 A x-5 B}-5 A H+25 F G\right)+A H
   \left(12 F H x \sqrt{4 A x-5 B}-75 G \sqrt{4 A x-5 B}-100 F G x\right)\right)}{\sqrt[4]{4 A x-5 B}}-75 \sqrt{5} \sqrt{G}
   \left(-A G H+B F H^2+5 F G^2\right) \tan ^{-1}\left(\frac{\sqrt{H} \sqrt[4]{4 A x-5 B}}{\sqrt{5} \sqrt{G}}\right)}{15 A^2
   H^{7/2}}",(75*sqrt(5)*sqrt(G)*(4*A*x - 5*B)**(1/4)*(A*G*H - B*F*H**2 - 5*F*G**2)*atan(sqrt(5)*sqrt(H)*(4*A*x - 5*B)**(1/4)/(5*sqrt(G))) + sqrt(H)*(20*A**2*H**2*x + A*H*(-100*F*G*x + 12*F*H*x*sqrt(4*A*x - 5*B) - 75*G*sqrt(4*A*x - 5*B)) + 5*B*H*(-5*A*H + 25*F*G + 12*F*H*sqrt(4*A*x - 5*B)) + 375*F*G**2*sqrt(4*A*x - 5*B)))/(15*A**2*H**(7/2)*(4*A*x - 5*B)**(1/4)),Symbolic,"U-Math
integral_calc
147944c5-b782-48c5-a664-d66deb92d9a7"
79,"Solve the following integral. Assume A,B,F are real and positive.
$ \int \frac{3 A \csc ^7(2 F x) \sec (2 F x)}{1 B}   dx $",-\frac{A \left(2 \csc ^6(2 F x)+3 \csc ^4(2 F x)+6 \csc ^2(2 F x)+12 (\log (\cos (2 F x))-\log (\sin (2 F x)))\right)}{8 B F},-A*(-12*log(sin(2*F*x)) + 12*log(cos(2*F*x)) + 2*csc(2*F*x)**6 + 3*csc(2*F*x)**4 + 6*csc(2*F*x)**2)/(8*B*F),Symbolic,"U-Math
integral_calc
1db212f0-2fac-410d-969d-fe3b5b55d076"
80,"Solve the following integral. Assume A,F are real and positive.
$ \int A \csc^5 (8 F x)   dx $","-\frac{A \left(\csc ^4(4 F x)+6 \csc ^2(4 F x)-\sec ^4(4 F x)-6 \sec ^2(4 F x)+24 (\log (\cos (4 F x))-\log (\sin (4 F
   x)))\right)}{512 F}",-A*(-24*log(sin(4*F*x)) + 24*log(cos(4*F*x)) + csc(4*F*x)**4 + 6*csc(4*F*x)**2 - sec(4*F*x)**4 - 6*sec(4*F*x)**2)/(512*F),Symbolic,"U-Math
integral_calc
275f7ceb-f331-4a3f-96ec-346e6d81b32a"
81,"Solve the following integral. Assume A,B,F are real and positive.
$ \int \cos (2 F x) \left(A (F x)^3+3 B \right)   dx $",\frac{2 \sin (2 F x) \left(A F x \left(2 F^2 x^2-3\right)+6 B\right)+3 A \left(2 F^2 x^2-1\right) \cos (2 F x)}{8 F},((2*A*F*x*(2*F**2*x**2 - 3) + 12*B)*sin(2*F*x) + 3*A*(2*F**2*x**2 - 1)*cos(2*F*x))/(8*F),Symbolic,"U-Math
integral_calc
47a11349-0386-4969-9263-d3cdfcc98cb9"
82,"Use factoring to calculate the following limit.
Assume A,B,F are real and positive.
$ \lim_{x \rightarrow K} \frac{(F x)^{4 B} - K^{4 B}}{A \left((F x)^{5 B}- K^{5 B}\right)} $",\frac{4 K^{-B}}{5 A},4/(5*A*K**B),Symbolic,"UGMathBench
Calculus_-_single_variable_0016"
83,"Calculate the following limit.
Assume A,B,F are real and positive.
$ \frac{1 B - B \cos (10 F x)}{A \cos ^2(6 F x) - 1 A} $",-\frac{25 B}{18 A},-25*B/(18*A),Symbolic,"UGMathBench
Calculus_-_single_variable_0022"
84,"Calculate the following limit.
Assume A,B,F are real and positive.
$ \frac{A (F x)^2+11 A F x - 12 A}{B \log (F x)} $",\frac{13 A}{B},13*A/B,Symbolic,"UGMathBench
Calculus_-_single_variable_0508"
85,"Calculate the following limit.
Assume A,F are real and A>1.
$ \lim\limits_{x\to+\infty} 4^{-\frac{1}{F x}} \left(\frac{(4 A)^{F x} + (6 A)^{F x} }{1 A}\right)^{\frac{1}{F x}} $",6 A,6*A,Symbolic,"UGMathBench
Calculus_-_single_variable_0512"
86,"Calculate the following integral. 
Assume A,B, F are real and positive.
$\int_{2 B}^{\infty} 3 A (F x)^2 e^{- (F x)^3}  dx=$",\frac{A e^{-8 B^3 F^3}}{F},A/(F*e**(8*B**3*F**3)),Symbolic,"UGMathBench
Calculus_-_single_variable_0592"
87,"Evaluate the indefinite integral. 
Assume A, F are real and positive.
$\int A \tan ^3(F x) \sec ^9(F x)   dx$",\frac{A \sec ^9(F x) \left(9 \sec ^2(F x)-11\right)}{99 F},A*(9*sec(F*x)**2 - 11)*sec(F*x)**9/(99*F),Symbolic,"UGMathBench
Calculus_-_single_variable_0604"
88,"Evaluate the indefinite integral.
Assume A, F are real and positive.
$\int 208 A \cos ^4(16 F x)  dx$",\frac{13 A (192 F x+8 \sin (32 F x)+\sin (64 F x))}{32 F},13*A*(192*F*x + 8*sin(32*F*x) + sin(64*F*x))/(32*F),Symbolic,"UGMathBench
Calculus_-_single_variable_0606"
89,"Evaluate the integral.
Assume A, B, F, G are real and positive.
$ \int \frac{-38 A+10 B (F x)^2-48 F G x}{(F x)^3-5 (F x)^2-8 F x+48} dx $",\frac{2 \left(\frac{7 (19 A-80 B+96 G)}{F x-4}+(19 A+200 B-72 G) \log (4-F x)+(-19 A+45 B+72 G) \log (F x+3)\right)}{49 F},2*(133*A - 560*B + 672*G + (F*x - 4)*((-19*A + 45*B + 72*G)*log(F*x + 3) + (19*A + 200*B - 72*G)*log(-F*x + 4)))/(49*F*(F*x - 4)),Symbolic,"UGMathBench
Calculus_-_single_variable_0612"
90,"Evaluate the integral.
Assume A,B,F are real and positive.
$ \int A e^{F x} \sqrt{64 B-e^{2 F x}} \;dx$",\frac{A \left(e^{F x} \sqrt{64 B-e^{2 F x}}+64 B \tan ^{-1}\left(\frac{e^{F x}}{\sqrt{64 B-e^{2 F x}}}\right)\right)}{2 F},A*(64*B*atan(e**(F*x)/sqrt(64*B - e**(2*F*x))) + e**(F*x)*sqrt(64*B - e**(2*F*x)))/(2*F),Symbolic,"UGMathBench
Calculus_-_single_variable_0624"
91,"Evaluate the following limit.
Assume A,B,F are real and positive.
$\lim_{x \to 0} \frac{-\frac{9}{2} (1 B)^2 (F x)^6+3 B F^3 x^3+e^{-3 B (F x)^3}-1}{12 A (F x)^9} $",-\frac{3 B^3}{8 A},-3*B**3/(8*A),Symbolic,"UGMathBench
Calculus_-_single_variable_0939"
92,"Solve the following first-order differential equation:
Assume A,B,F,G are real and positive.
$ A y'(x)+2 B y(x)=F e^{-x}, \quad y(0)=1 G.$","\frac {e^{-\frac{2 B x}{A}} \left(F \left(-e^{x \left(\frac{2 B}{A}-1\right)}\right)+A G-2 B
   G+F\right)}{A-2 B}",(A*G - 2*B*G + F + F*(-e**x*((-A + 2*B)/A)))/(e**(2*B*x/A)*(A - 2*B)),Symbolic,"MathOdyssey
Problem 340 from Differential Equations - College Math"
93,"Consider the differential equation 
$A y'(x)=B x y(x)$. 
Find the value of $y(\sqrt{2})$ given that $y(0) = 2 F$.
Assume A,B,F are real and positive.",2 F e^{\frac{B}{A}},2*F*e**(B/A),Symbolic,"MathOdyssey
Problem 339 from Differential Equations - College Math"
94,"Evaluate the following limit:
$ \lim_{x \to \infty} \sqrt{-(1 B) + H (F x)^2 + 2 F G x}-\sqrt{3 A + H (F x)^2} .$
Assume A,B,F,G,H are real and positive.",\frac{G}{\sqrt{H}},G/sqrt(H),Symbolic,"MathOdyssey
Problem 315 from Calculus and Analysis - College Math"
95,"Evaluate $\lim\limits_{x\to \frac{4 B}{1 F}} \frac{A (F x - 4 B)}{\sqrt{F x}-2 \sqrt{1 B}} $.
Assume A,B,F are real and positive.",4 A \sqrt{B},4*A*sqrt(B),Symbolic,"MathOdyssey
Problem 317 from Calculus and Analysis - College Math"
96,"Evaluate $\int_0^(4 B)  (2 A x - \sqrt{(4 B F)^2 - (F x)^2}) dx$.
Assume A,B,F are real and positive.",\frac{1}{4} B^2 (4 A-\pi  F),B**2*(A - F*pi/4),Symbolic,"MathOdyssey
Problem 325 from Calculus and Analysis - College Math"
97,"Evaluate the series $\sum\limits_{x=1}^\infty \frac{1 A}{B (1 F + x) (1 F+x+2)} $.
Assume A,B,F are real and positive.",\frac{A (2 F+3)}{2 B (F+1) (F+2)},A*(2*F + 3)/(2*(F + 2)*B*(F + 1)),Symbolic,"MathOdyssey
Problem 326 from Calculus and Analysis - College Math"
98,"Evaluate the limit $\lim\limits_{x \to 0} \frac{(A x+1)^{\frac{1}{A x}}-e}{B x} $.
Assume A,B are real and positive.",-\frac{e A}{2 B},-A*e/(2*B),Symbolic,"MathOdyssey
Problem 327 from Calculus and Analysis - College Math"
99,"Evaluate the series $\sum\limits_{n=0}^\infty \frac{ \left(\frac{1}{2 B}\right)^{A (2 n+1)}}{F (2 n+1)} $.
Assume A,B,F are real and positive.",\frac{\tanh ^{-1}\left(2^{-A} \left(\frac{1}{B}\right)^A\right)}{F},atanh((1/(2*B))**A)/F,Symbolic,"MathOdyssey
Problem 328 from Calculus and Analysis - College Math"
100,"Evaluate the limit
$\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1 A}{B \sqrt{F n^2-k^2}}$
Assume A,B, $F \ge 1$ are real and positive.",\frac{A}{B} \arcsin\left(\frac{1}{\sqrt{F}}\right),A*asin(1/sqrt(F))/B,Symbolic,"MathOdyssey
Problem 329 from Calculus and Analysis - College Math"
101,"Evaluate the iterated integral $\int_0^1dy\int_y^1 e^{-A (F x)^2}+B e^{F x} dx$.
Assume A,B,F are real and positive.",\frac{2 A B \left(e^F (F-1)+1\right)-e^{-A F^2}+1}{2 A F^2},(e**(A*F**2)*(2*A*B*(e**F*(F - 1) + 1) + 1) - 1)/(2*A*F**2*e**(A*F**2)),Symbolic,"MathOdyssey
Problem 336 from Calculus and Analysis - College Math"
102,"What is the integral of $ 2 A x-B x^{7 F} \tan ^{-1}(3 G) $
Assume A,B,F,G are real and positive.",x \left(A x-\frac{B x^{7 F} \tan ^{-1}(3 G)}{7 F+1}\right),x*((A*x*(7*F + 1) - B*x**(7*F)*atan(3*G))/(7*F + 1)),Symbolic,"GHOSTS 
Symbolic Integration
Q97"
103,"What is the integral of
$ (1 A) + B F x + \cosh (2 G) (F x)^{3 H} $
Assume A,B,F,G,H are real and positive.",A x+\frac{1}{2} B F x^2+\frac{x \cosh (2 G) (F x)^{3 H}}{3 H+1},x*(2*(F*x)**(3*H)*cosh(2*G) + (2*A + B*F*x)*(3*H + 1))/(2*(3*H + 1)),Symbolic,"GHOSTS 
Symbolic Integration
Q98"
104,"What is the integral of $12 A+6 B \cosh (F x)$
Assume A,B,F are real and positive.",12 A x+\frac{6 B \sinh (F x)}{F},12*A*x + 6*B*sinh(F*x)/F,Symbolic,"GHOSTS 
Symbolic Integration
Q90"
105,"What is the integral of 
$ 4 (B x)^{7 F}+G \sin ((1 H)+A x) $
Assume A,B,F,G,H are real and positive.",\frac{4 A x (B x)^{7 F}-(7 F+1) G \cos (H+A x)}{7 F A+A},(4*A*x*(B*x)**(7*F) - G*(7*F + 1)*cos(H + A*x))/(A*(7*F + 1)),Symbolic,"GHOSTS 
Symbolic Integration
Q14"
106,"What is the integral of
$ 2 x+2 B x^{2 F}+\frac{x}{G x+H x e^{A x}} $.
Assume A,B,F,G,H are real and positive.","x \left(x+\frac{2 B x^{2 F}}{2 F+1}\right)-\frac{\log \left(G A \left(G+H e^{A x}\right)\right)}{G A}+\frac{\log \left(e^{A
   x}\right)}{G A}",(G*A*x*((x*(2*F + 1) + 2*B*x**(2*F))/(2*F + 1)) + log(e**(A*x)) - log(G*A*(G + H*e**(A*x))))/(G*A),Symbolic,"GHOSTS 
Symbolic Integration
Q7"
107,"What is the integral of 
$ B \log (3 H x) \cos (F \log (\sin (3)))-A x $
Assume A,B,F,H are real and positive.",B x (\log (3 H x)-1) \cos (F \log (\sin (3)))-\frac{A x^2}{2},-A*x**2/2 + B*x*(log(3*H*x) - 1)*cos(F*log(sin(3))),Symbolic,"GHOSTS 
Symbolic Integration
Q15"
108,"What is the integral of
$ 3 A x - 4 B (H x)^2 \cos (F x+3 G) $
Assume A,B,F,G,H are real and positive.",\frac{3 A x^2}{2}-\frac{8 B H^2 x \cos (F x+3 G)}{F^2}-\frac{4 B H^2 \left(F^2 x^2-2\right) \sin (F x+3 G)}{F^3},(3*A*F**3*x**2 - 16*B*F*H**2*x*cos(F*x + 3*G) - 8*B*H**2*(F**2*x**2 - 2)*sin(F*x + 3*G))/(2*F**3),Symbolic,"GHOSTS 
Symbolic Integration
Q18"
109,"What is the integral of 
$ A \tan ^{-1}(B x)+F \log (G \tanh (3 H))-3 $
Assume A,B,F,G,H are real and positive.",-\frac{A \log \left(B^2 x^2+1\right)}{2 B}+A x \tan ^{-1}(B x)+x (F \log (G \tanh (3 H))-3),A*x*atan(B*x) - A*log(B**2*x**2 + 1)/(2*B) + x*(F*log(G*tanh(3*H)) - 3),Symbolic,"GHOSTS 
Symbolic Integration
Q20"
110,"What is the integral of
$ A (F x+4 G) (3 F x+4 G) e^{B x (F x+4 G)^2} $
Assume A,B,F,G are real and positive.",\frac{A e^{B x (F x+4 G)^2}}{B},A*e**(B*x*(F*x + 4*G)**2)/B,Symbolic,"GHOSTS 
Symbolic Integration
Q22"
111,"What is the integral of
$ -A e^{3 B x} \sin \left(F e^{3 B x}\right) $
Assume A,B,F are real and positive.",\frac{A \cos \left(F e^{3 B x}\right)}{3 B F},A*cos(F*e**(3*B*x))/(3*B*F),Symbolic,"GHOSTS 
Symbolic Integration
Q29"
112,"If $\log_{2 A} x - 2 F \log _{2 A} y=2 B$, determine $y$, as a function of $x$
Assume A,B,F are real and positive.",e^{\frac{2 F \log (2 A) \log (x)}{\log (2 A)-2 B \log(x)}},e**(-2*F*log(2*A)*log(x)/(2*B*log(x) - log(2*A))),Symbolic,"OlympiadBench
oe_to_maths_en_comp
2498"
113,"If $f(x)=2 A x+ (1 B)$ and $g(f(x)) = 4 F x^{2}+ (1 G)$, determine an expression for $g(x)$.",\frac{F (x-B)^2}{A^2}+G,G + F*(-B + x)**2/A**2,Symbolic,"OlympicArena
Math_1381"
114,"Solve the following integral. Assume A,B,F are real and B>0.
$\int_0^{\frac{\pi}{2 F}} \frac{A x \sin(2 F x)}{(1 B) + \cos^2(2 F x)}   dx$",\frac{A\pi}{4F^2\sqrt{B}} \arctan\!\frac{1}{\sqrt{B}},A*pi*atan(1/sqrt(B))/(4*sqrt(B)*F**2),Symbolic,OBMU 2019 - Q21
115,"Solve the following integral. Assume A,B,F,G are real and positive.
$\int_{1}^{2} \frac{A e^{F x} (F x-1)}{F x \left(B e^{F x}+F G x\right)}   dx$ ",-\frac{A \log \left(\frac{2 (e B+G)}{e^2 B+2 G}\right)}{B F},"-A*log((2*(B*e + G))/(B*e**2 + 2*G), E)/(B*F)",Symbolic,OBMU 2019 - Q18
116,"Solve the following integral. Assume A,B,F are real and positive.
Solve the following integral:
$\int_{0}^{\pi} A \log(B (\sin(x))^{1 F})   dx$",A \pi \log\left(\frac{B}{2^F}\right),"A*(pi*log(B/(2**F), E))",Symbolic ,OBMU 2019 - Q22
117,"Evaluate the following hypergeometric function. Assume the parameters: A,B are real numbers. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1 ,1 \\ 2 \end{array}; (-A)^B \right) $",-(-A)^{-B} \log \left(1-(-A)^B\right),"log(1 - (-A)**B, E)/((-A)**B)",Symbolic ,"ASyMOB
Hypergeometrics
Q1"
118,"Evaluate the following hypergeometric function. Assume the parameters: A,B are real numbers. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1 ,1 \\ 3 \end{array}; -2 \cdot (A^B) \right) $","\frac{1}{2} A^{-2 B} \left(\left(2 A^B+1\right) \log \left(2 A^B+1\right)-2
   A^B\right)","(-2*(A**B) + (2*(A**B) + 1)*log(2*(A**B) + 1, E))/(2*(A**B)**2)",Symbolic ,"ASyMOB
Hypergeometrics
Q2"
119,"Evaluate the following hypergeometric function. Assume the parameters: A,B,G,H are real numbers. Return a closed-form symbolic answer.
$ {}_8F_7\left( \begin{array}{c} 1,1,1, (1 A), (1 B), 1, (1 G), (1 H) \\ 2,2, (1 H), (1 G), (1 B), 1, (1 A) \end{array}; -1 \right) $",\frac{\pi ^2}{12},pi**2/12,Symbolic ,"ASyMOB
Hypergeometrics
Q3"
120,"Evaluate the following hypergeometric function. Assume the parameters: x,A,B,G,H are real numbers. Return a closed-form symbolic answer.
$ {}_3F_2\left( \begin{array}{c} -1,-A, -B \\ -H, -G \end{array}; x \right) $",1-\frac{A B x}{H G},1 - A*(B*x)/(H*G),Symbolic ,"ASyMOB
Hypergeometrics
Q4"
121,"Solve the following integral. Assume the parameters: A,B,F are real numbers. Return a closed-form symbolic answer.
$ \int \frac{ 1 A }{ 1 B + (x F)^3 }   dx $","-\frac{A \left(\log \left(B^{2/3}-\sqrt[3]{B} F x+F^2 x^2\right)-2 \log \left(\sqrt[3]{B}+F x\right)+2 \sqrt{3} \tan
   ^{-1}\left(\frac{1-\frac{2 F x}{\sqrt[3]{B}}}{\sqrt{3}}\right)\right)}{6 B^{2/3} F}",-A*(-2*log(B**(1/3) + F*x) + log(B**(2/3) - B**(1/3)*F*x + F**2*x**2) + 2*sqrt(3)*atan(sqrt(3)*(B**(1/3) - 2*F*x)/(3*B**(1/3))))/(6*B**(2/3)*F),Symbolic ,"ASyMOB
Hypergeometrics
Q5"
122,"Solve the following integral. Assume A,B are positive integers.
$ \int \frac{(4 A + (4 A - (1 B))x^{1 B})x^{2 A - 1}}{2 (1 + x^{1 B} + x^{4 A})\sqrt{1 + x^{1 B}}} dx $",\tan ^{-1}\left(\frac{\left x^A}{\sqrt{x^B+1}}\right),atan(x**A/(sqrt(x**B + 1))),Symbolic ,"ASyMOB
Hypergeometrics
Q6" |