File size: 35,158 Bytes
672a413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
Index,Challenge,Answer in Latex,Answer in Sympy,Variation,Source
1,Compute the first 5 nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $ f(x) = e^{\sin(x)} $,1+x+\frac{x^2}{2}-\frac{x^4}{8}-\frac{x^5}{15}+\cdots,-x**5/15 - x**4/8 + x**2/2 + x + 1,Original,"U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764"
2,Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$,\sum_{n=2}^\infty\left(\frac{1}{6}\cdot n\cdot\left(n^2-1\right)\cdot x^n\right),"Sum(n*x**n*(n**2 - 1), (n, 2, oo))/6",Original,"U-Math
sequences_series
fb6418ae-3440-4258-9388-89d799fd859a"
3,Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \sin(x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)$,\frac{1}{34560\cdot\sqrt{2}}\cdot\left(288\cdot x^5+1440\cdot x^4-5760\cdot x^3-17280\cdot x^2+34560\cdot x+34560\right),sqrt(2)*(x**5 + 5*x**4 - 20*x**3 - 60*x**2 + 120*x + 120)/240,Original,"U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921"
4,Compute the first 4 nonzero terms of the Maclaurin series of $f(x) = e^x \cdot \cos(x)$,1+x-\frac{x^3}{3}-\frac{x^4}{6},-x**4/6 - x**3/3 + x + 1,Original,"U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1"
5,Compute $\lim_{x \to 0}\left(\frac{ 2 \cdot \cos(x)+4 }{ 5 \cdot x^3 \cdot \sin(x) }-\frac{ 6 }{ 5 \cdot x^4 }\right)$,\frac{1}{150},1/150,Original,"U-Math
sequences_series
068e40ce-9108-4ef8-8ee5-0d1471ebbe43"
6,Evaluate $\lim_{x \to 0^{+}}\left(\left(\frac{ \tan\left(\frac{ x }{ 2 }\right) }{ \frac{ x }{ 2 } }\right)^{\frac{ 3 }{ x^2 }}\right)$,$e^{\frac{1}{4}}$,exp(1/4),Original,"U-Math
differential_calc
363dd580-f1fc-4867-a6ef-db2a03139745"
7,"Evaluate
$ \lim_{x \to 5} \left( \frac{ 3 \cdot x }{ x-5 }-\frac{ 3 }{ \ln\left(\frac{ x }{ 5 }\right) } \right) $",\frac{3}{2},3/2,Original,"U-Math
differential_calc
2d799998-115a-489b-a48b-57090954303e"
8,"Evaluate
$ \lim_{x \to \infty} \left(x - x^2 \cdot \ln\left(1 + \frac{ 1 }{ x }\right)\right) $",\frac{1}{2},1/2,Original,"U-Math
differential_calc
efdc4110-cf56-4f37-bf54-40fdd5d58145"
9,"Evaluate
$ \lim_{x \to 0^{+}} \left( \left( \frac{ \tan(2 \cdot x) }{ 2 \cdot x } \right)^{\frac{ 1 }{ 3 \cdot x^2 }} \right) $",e^{\frac{4}{9}},e**(4/9),Original,"U-Math
differential_calc
99a2304d-5d8e-4245-90da-a80651ca15d8"
10,"Evaluate
$ \lim_{x \to 0}\left( \left| \frac{ -\sin(x) }{ x } \right| \right)^{\frac{ 1 }{ 4 \cdot x^2 }} $",e^{\frac{-1}{24}},e**(-1/24),Original,"U-Math
differential_calc
84c6a419-c103-41d5-aad5-dd8e690c6e88"
11,"Integrate 
$ \int \sin(x)^4 \cdot \cos(x)^6 dx $",$C+\frac{1}{320}\cdot\left(\sin(2\cdot x)\right)^5+\frac{1}{128}\cdot\left(\frac{3\cdot x}{2}-\frac{\sin(4\cdot x)}{2}+\frac{\sin(8\cdot x)}{16}\right)$,C + 3*x/256 + sin(2*x)**5/320 - sin(4*x)/256 + sin(8*x)/2048,Original,"U-Math
integral_calc
0c0ba3db-1470-4c36-975c-91ff5f51986f"
12,"Calculate the integral:
$
\int \frac{ \sqrt[5]{x}+\sqrt[5]{x^4}+x \cdot \sqrt[5]{x} }{ x \cdot \left(1+\sqrt[5]{x^2}\right) }   dx
$",C+5\cdot\arctan\left(\sqrt[5]{x}\right)+\frac{5}{4}\cdot\sqrt[5]{x}^4,C + 5*x**(4/5)/4 + 5*atan(x**(1/5)),Original,"U-Math
integral_calc
126c4165-b3d5-4470-8412-08e79d9821cf"
13,"Solve the integral:
$
\int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) }   dx
$",C+\ln\left(\left|\tan(x)\right|\right)-\frac{3}{2\cdot\left(\tan(x)\right)^2}-\frac{3}{4\cdot\left(\tan(x)\right)^4}-\frac{1}{6\cdot\left(\tan(x)\right)^6},C + log(Abs(tan(x))) - 3 / (2 * tan(x)**2) - 3 / (4 * tan(x)**4) - 1 / (6 * tan(x)**6),Original,"U-Math
integral_calc
00f6affb-905a-4109-a78e-2dde7a0b83accf"
14,"Compute the integral:
$
-2 \cdot \int x^{-4} \cdot \left(4+x^2\right)^{\frac{ 1 }{ 2 }}   dx
$",C+\frac{1}{6}\cdot\left(\frac{4}{x^2}+1\right)\cdot\sqrt{\frac{4}{x^2}+1},(C*x**2 + sqrt((x**2 + 4)/x**2)*(x**2 + 4)/6)/x**2,Original,"U-Math
integral_calc
05ea9929-8cbb-432b-bbbb-ec1e74c9f401"
15,"Solve the integral:
$
\int \left(\frac{ x+4 }{ x-4 } \right)^{\frac{ 3 }{ 2 }}   dx
$",C+\sqrt{\frac{x+4}{x-4}}\cdot(x-20)-12\cdot\ln\left(\left|\frac{\sqrt{x-4}-\sqrt{x+4}}{\sqrt{x-4}+\sqrt{x+4}}\right|\right),C + sqrt((x + 4)/(x - 4)) * (x - 20) - 12 * ln(Abs((sqrt(x - 4) - sqrt(x + 4)) / (sqrt(x - 4) + sqrt(x + 4)))),Original,"U-Math
integral_calc
08c72d46-1abd-49e1-9c9c-ce509902be6e"
16,Compute the integral: $ \int \frac{ -1 }{ x^2 \cdot \left(3+x^3\right)^{\frac{ 5 }{ 3 }} }   dx $,\frac{1}{9}\cdot\sqrt[3]{1+\frac{3}{x^3}}+\frac{1}{18\cdot\left(1+\frac{3}{x^3}\right)^{\frac{2}{3}}},(x**3 + 2)/(6*x**3*(1 + 3/x**3)**(2/3)),Original,"U-Math
integral_calc
4c1292e1-d4b3-4acf-afaf-eaac62f2662d"
17,"Compute the integral:
$ \int \frac{ 4 \cdot x+\sqrt{4 \cdot x-5} }{ 5 \cdot \sqrt[4]{4 \cdot x-5}+\sqrt[4]{(4 \cdot x-5)^3} }   dx $",C+25\cdot\sqrt[4]{4\cdot x-5}+\frac{1}{5}\cdot\sqrt[4]{4\cdot x-5}^5-\frac{4}{3}\cdot\sqrt[4]{4\cdot x-5}^3-\frac{125}{\sqrt{5}}\cdot\arctan\left(\frac{1}{\sqrt{5}}\cdot\sqrt[4]{4\cdot x-5}\right),C + (4*x - 5)**(5/4)/5 - 4*(4*x - 5)**(3/4)/3 + 25*(4*x - 5)**(1/4) - 25*sqrt(5)*atan(sqrt(5)*(4*x - 5)**(1/4)/5),Original,"U-Math
integral_calc
147944c5-b782-48c5-a664-d66deb92d9a7"
18,"Solve the integral:
$
\int \frac{ 3 }{ \sin(2 \cdot x)^7 \cdot \cos(-2 \cdot x) }   dx
$",C+\frac{3}{2}\cdot\left(\ln\left(\left|\tan(2\cdot x)\right|\right)-\frac{3}{2\cdot\left(\tan(2\cdot x)\right)^2}-\frac{3}{4\cdot\left(\tan(2\cdot x)\right)^4}-\frac{1}{6\cdot\left(\tan(2\cdot x)\right)^6}\right),"C + (3/2) * (log(Abs(tan(2*x))) - 3/(2 * tan(2*x)**2) - 3/(4 * tan(2*x)**4) - 1/(6 * tan(2*x)**6)
)",Original,"U-Math
integral_calc
1db212f0-2fac-410d-969d-fe3b5b55d076"
19,"Solve the integral:
$
\int \frac{ 1 }{ \sin(8 \cdot x)^5 }   dx
$",C+\frac{1}{128}\cdot\left(2\cdot\left(\tan(4\cdot x)\right)^2+6\cdot\ln\left(\left|\tan(4\cdot x)\right|\right)+\frac{1}{4}\cdot\left(\tan(4\cdot x)\right)^4-\frac{2}{\left(\tan(4\cdot x)\right)^2}-\frac{1}{4\cdot\left(\tan(4\cdot x)\right)^4}\right),"C + Rational(1, 128) * (2 * tan(4 * x)**2 + 6 * log(Abs(tan(4 * x))) + Rational(1, 4) * tan(4 * x)**4 - 2 / tan(4 * x)**2 - 1 / (4 * tan(4 * x)**4))",Original,"U-Math
integral_calc
275f7ceb-f331-4a3f-96ec-346e6d81b32a"
20,"Evaluate the integral:
$
I = \int \left(x^3 + 3\right) \cdot \cos(2 \cdot x)   dx
$",\frac{1}{256}\cdot\left(384\cdot\sin(2\cdot x)+128\cdot x^3\cdot\sin(2\cdot x)+192\cdot x^2\cdot\cos(2\cdot x)-96\cdot\cos(2\cdot x)-256\cdot C-192\cdot x\cdot\sin(2\cdot x)\right),-C + x**3*sin(2*x)/2 + 3*x**2*cos(2*x)/4 - 3*x*sin(2*x)/4 + 3*sin(2*x)/2 - 3*cos(2*x)/8,Original,"U-Math
integral_calc
47a11349-0386-4969-9263-d3cdfcc98cb9"
21,"Use factoring to calculate the following limit.
$ \lim_{x \rightarrow K} \frac {{x}^4-K^4} {{x}^5-K^5} $",\frac{4}{5 K},4/(5*K),Original,"UGMathBench
Calculus_-_single_variable_0016"
22,Find the limit. $ \lim_{x \to 0} \frac{1-\cos\!\left(10x\right)}{\cos^{2}\!\left(6x\right)-1}$,\frac{-25}{18},-25/18,Original,"UGMathBench
Calculus_-_single_variable_0022"
23,Evaluate the limit. $ \lim_{x\to 1} \dfrac{x^2+11x-12}{\ln x}=$,13,13,Original,"UGMathBench
Calculus_-_single_variable_0508"
24,"Evaluate the limit below, given that $f(t)=\left(\frac{4^t+6^t}{4}\right)^{1/t}$. $\lim\limits_{t\to+\infty} f(t)$",6,6,Original,"UGMathBench
Calculus_-_single_variable_0512"
25,Calculate the integral. $\int_{2}^{\infty} 3x^{2}e^{-x^{3}}  dx=$,\frac{1}{e^{8}},e**(-8),Original,"UGMathBench
Calculus_-_single_variable_0592"
26,Evaluate the indefinite integral. $\int \tan^{3}\!\left(x\right)\sec^{9}\!\left(x\right)   dx$,\frac{\sec^{11}{\left(x \right)}}{11} - \frac{\sec^{9}{\left(x \right)}}{9},sec(x)**11/11 - sec(x)**9/9,Original,"UGMathBench
Calculus_-_single_variable_0604"
27,"Evaluate the indefinite integral.
$\int 208 \cos^4(16x) dx$",78 x + \frac{13 \sin{\left(16 x \right)} \cos^{3}{\left(16 x \right)}}{4} + \frac{39 \sin{\left(16 x \right)} \cos{\left(16 x \right)}}{8},78*x + 13*sin(16*x)*cos(16*x)**3/4 + 39*sin(16*x)*cos(16*x)/8,Original,"UGMathBench
Calculus_-_single_variable_0606"
28,"Evaluate the integral.
$ \int \frac{10x^2-48x-38}{x^3-5x^2-8x+48} dx $",\frac{2 \left(\left(x - 4\right) \left(3 \log{\left(\left|{x - 4}\right| \right)} + 2 \log{\left(\left|{x + 3}\right| \right)}\right) + 5\right)}{x - 4} ,2*((x - 4)*(3*log(Abs(x - 4)) + 2*log(Abs(x + 3))) + 5)/(x - 4),Original,"UGMathBench
Calculus_-_single_variable_0612"
29,Evaluate the integral. $ \int e^{x}\sqrt{64-e^{2x}} \;dx$ $=$,\frac{e^{x} \sqrt{64 - e^{2 x}}}{2} + 32 \operatorname{asin}{\left(\frac{e^{x}}{8} \right)},e**x*sqrt(64 - e**(2*x))/2 + 32*asin(e**x/8),Original,"UGMathBench
Calculus_-_single_variable_0624"
30,Evaluate $\lim_{x \to 0} \frac{e^{-3x^3}-1+3x^3-\frac{9}{2}x^6}{12x^9}$,\frac{-3}{8},-3/8,Original,"UGMathBench
Calculus_-_single_variable_0939"
31,"Solve the following first-order differential equation:
$
\frac{dy}{dx} + 2y = e^{-x}, \quad y(0) = 1.
$",e^{-x},e**(-x),Original,"MathOdyssey
Problem 340 from Differential Equations - College Math"
32,Consider the differential equation $\frac{dy}{dx} = xy$. Find the value of $y(\sqrt{2})$ given that $y(0) = 2$.,2e,2*e,Original,"MathOdyssey
Problem 339 from Differential Equations - College Math"
33,"Evaluate the following limit:
$
\lim_{n \to \infty} \left(\sqrt{n^2+2n-1}-\sqrt{n^2+3}\right).
$",1,1,Original,"MathOdyssey
Problem 315 from Calculus and Analysis - College Math"
34,Evaluate $\lim\limits_{x\to 4}\frac{x-4}{\sqrt{x}-2}$.,4,4,Original,"MathOdyssey
Problem 317 from Calculus and Analysis - College Math"
35,Evaluate $\displaystyle{\int_0^4(2x-\sqrt{16-x^2})dx}$.,16 - 4 \pi,16 - 4*pi,Original,"MathOdyssey
Problem 325 from Calculus and Analysis - College Math"
36,Evaluate the series $\sum\limits_{n=1}^\infty\frac{1}{(n+1)(n+3)}$.,\frac{5}{12},5/12,Original,"MathOdyssey
Problem 326 from Calculus and Analysis - College Math"
37,Evaluate the limit $\lim\limits_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-e}{x}$.,-\frac{ e}{2},-e/2,Original,"MathOdyssey
Problem 327 from Calculus and Analysis - College Math"
38,Evaluate the series $\sum\limits_{n=0}^\infty \frac{1}{2n+1}\left(\frac12\right)^{2n+1}$.,\ln\sqrt{3},log(3)/2,Original,"MathOdyssey
Problem 328 from Calculus and Analysis - College Math"
39,Evaluate the limit $\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1}{\sqrt{n^2-k^2}}$.,\frac{\pi}{2},pi/2,Original,"MathOdyssey
Problem 329 from Calculus and Analysis - College Math"
40,Evaluate the iterated integral $\displaystyle{\int_0^1dy\int_y^1(e^{-x^2}+e^x)dx}$.,\frac{3}{2}-\frac12 e^{-1},(3*e - 1)/(2*e),Original,"MathOdyssey
Problem 336 from Calculus and Analysis - College Math"
41,What is the integral of $ 2x - x^7atan(3) $,x^2-\frac{1}{8} x^8 \tan ^{-1}(3),-x**8*atan(3)/8 + x**2,Original,"GHOSTS 
Symbolic Integration
Q97"
42,What is the integral of $ 1 + x + x^3*cosh(2) $,\frac{1}{4} x^4 \cosh (2)+\frac{x^2}{2}+x,x**4*cosh(2)/4 + x**2/2 + x,Original,"GHOSTS 
Symbolic Integration
Q98"
43,What is the integral of $ 12 + 6cosh(x) $,12 x + 6 \sinh{\left(x \right)},12*x + 6*sinh(x),Original,"GHOSTS 
Symbolic Integration
Q90"
44,What is the integral of 4x^7 + sin(1 + x),\frac{x^8}{2} - \cos(1+x) ,x**8/2 - cos(x + 1),Original,"GHOSTS 
Symbolic Integration
Q14"
45,What is the integral of 2x + 2x^2 + x[(x + x*e^x)^-1],\frac{2 x^3}{3}+x^2-2 \tanh ^{-1}\left(2 e^x+1\right),2*x**3/3 + x**2 + x - log(exp(x) + 1),Original,"GHOSTS 
Symbolic Integration
Q7"
46,What is the integral of -x + cos[ln(sin(3))] * ln(3x),-\frac{1}{2} x (x-2 \log (3 x) \cos (\log (\sin (3)))+2 \cos (\log (\sin (3)))),"-1*x*((x - 2*log(3*x, E)*cos(log(sin(3), E))) + 2*cos(log(sin(3), E)))/2",Original,"GHOSTS 
Symbolic Integration
Q15"
47,What is the integral of 3x - 4*[cos(x+3)]*x^2,\frac{3 x^2}{2}-4 \left(x^2-2\right) \sin (x+3)-8 x \cos (x+3),-8*x*cos(x + 3) + ((3*x**2)/2 - 4*(x**2 - 2)*sin(x + 3)),Original,"GHOSTS 
Symbolic Integration
Q18"
48,What is the integral of -3 + atan(x) + ln(tanh(3)),x \arctan(x) - \frac{1}{2} \ln(1 + x^2) + x \ln(\tanh(3)) - 3x + C,x*atan(x) - 3*x + x*log(tanh(3)) - log(x**2 + 1)/2,Original,"GHOSTS 
Symbolic Integration
Q20"
49,What is the integral of e^{x \left(x + 4\right)^{2}} \left(x + 4\right) \left(3 x + 4\right),e^{x (x+4)^2},e**(x*(x + 4)**2),Original,"GHOSTS 
Symbolic Integration
Q22"
50,What is the integral of -e^{3x} * sin(e^{3x}),\frac{1}{3} \cos \left(e^{3 x}\right),cos(e**(3*x))/3,Original,"GHOSTS 
Symbolic Integration
Q29"
51,"If $\log _{2} x-2 \log _{2} y=2$, determine $y$, as a function of $x$",\frac{1}{2} \sqrt{x},sqrt(x)/2,Original,"OlympiadBench
oe_to_maths_en_comp
2498"
52,"If $f(x)=2 x+1$ and $g(f(x))=4 x^{2}+1$, determine an expression for $g(x)$.",x^2-2 x+2,x**2 - 2*x + 2,Original,"OlympicArena
Math_1381"
53,Solve the following integral $\int_0^{\frac{\pi}{2}} \frac{x \sin(2x)}{1 + \cos^2(2x)}   dx$,Pi^2 / 16,Pi**2 / 16,Original,OBMU 2019 - Q21
54,"Solve the following integral:
$\int_{1}^{2} \frac{e^x(x - 1)}{x(x + e^x)}   dx$ ",\ln\left( \frac{2 + e^2}{2 + 2e} \right),"log((e**2 + 2)/(2*e + 2), E)",Original,OBMU 2019 - Q18
55,"Solve the following integral:
$\int_{0}^{\pi} \log(\sin(x))   dx$",-\pi \log (2),"-pi*log(2, E)",Original,OBMU 2019 - Q22
56,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.

$ {}_2F_1\left( \begin{array}{c} 1,1\ \\ 2 \end{array}; -1 \right) $",\log (2),"log(2, E)",Original,"ASyMOB
Hypergeometrics
Q1"
57,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.

$ {}_2F_1\left( \begin{array}{c} 1,1 \\ 3 \end{array}; -2 \right) $",\frac{3 \log (3)}{2}-1,"-1 + (3*log(3, E))/2",Original,"ASyMOB
Hypergeometrics
Q2"
58,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.

$ {}_3F_2\left( \begin{array}{c} 1,1,1 \\ 2,2 \end{array}; -1 \right) $",\frac{\pi ^2}{12},pi**2/12,Original,"ASyMOB
Hypergeometrics
Q3"
59,"Evaluate the following hypergeometric function. Return a closed-form symbolic answer.

$ {}_3F_2\left( \begin{array}{c} -1,-1,-1 \\ -1,-1 \end{array}; x \right) $",1-x,1-x,Original,"ASyMOB
Hypergeometrics
Q4"
60,"Solve the following integral. Return a closed-form symbolic answer.

\int \frac{ 1 }{ 1 + x^3 }   dx",-\frac{1}{6} \log \left(x^2-x+1\right)+\frac{1}{3} \log (x+1)+\frac{\tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)}{\sqrt{3}},"(log(x + 1, E)/3 - 1*log((x**2 - x) + 1, E)/6) + atan((2*x - 1)/(sqrt(3)))/(sqrt(3))",Original,"ASyMOB
Hypergeometrics
Q5"
61,"Solve the following integral.

\int \frac{(4 + (4 - 1)x^1)x^{2-1}}{2(1 + x^1 + x^{4})\sqrt{1 + x^1}} dx",\tan ^{-1}\left(\frac{x^2}{\sqrt{x+1}}\right),atan(x**2/sqrt(x + 1)),Original,"ASyMOB
Hypergeometrics
Q6"
62,"Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) =  A e^{B \sin(x)} $, where A and B are symbolic constants.","\frac{1}{6} A \left(B^3-B\right) x^3+\frac{1}{2} A B^2 x^2+\frac{1}{120} A \left(B^5-10 B^3+B\right) x^5+\frac{1}{24} A
   \left(B^4-4 B^2\right) x^4+A B x+A",A*B**2*x**2/2 + A*B*x + A + x**5*A*(B**5 - 10*B**3 + B)/120 + x**4*A*(B**4 - 4*B**2)/24 + x**3*A*(B**3 - B)/6,Symbolic,"U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764"
63,Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(A n \cdot (F x)^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(B n \cdot (F x)^n\right$,\sum_{n=2}^\infty \frac{1}{6} A B n \left(n^2-1\right) F^n \cdot x^n,"A*B*Sum(F**n*x**n*n*(n**2 - 1), (n, 2, oo))/6",Symbolic,"U-Math
sequences_series
fb6418ae-3440-4258-9388-89d799fd859a"
64,Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin(A x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$,"\frac{1}{120} A^5 F x^5 \cos \left(\frac{\pi  B}{4}\right)+\frac{1}{24} A^4 F x^4 \sin \left(\frac{\pi 
   B}{4}\right)-\frac{1}{6} A^3 F x^3 \cos \left(\frac{\pi  B}{4}\right)-\frac{1}{2} A^2 F x^2 \sin \left(\frac{\pi 
   B}{4}\right)+A F x \cos \left(\frac{\pi  B}{4}\right)+F \sin \left(\frac{\pi  B}{4}\right)",F*(A**5*x**5*cos(B*pi/4) + 5*A**4*x**4*sin(B*pi/4) - 20*A**3*x**3*cos(B*pi/4) - 60*A**2*x**2*sin(B*pi/4) + 120*A*x*cos(B*pi/4) + 120*sin(B*pi/4))/120,Symbolic,"U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921"
65,Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = F e^{A x} \cdot \cos(B x)$,"F x^3 \left(\frac{A^3}{6}-\frac{A B^2}{2}\right)+\frac{1}{2} F x^2 \left(A^2-B^2\right)+F x^4 \left(\frac{A^4}{24}-\frac{A^2
   B^2}{4}+\frac{B^4}{24}\right)+A F x+F",F*(4*A*x**3*(A**2 - 3*B**2) + 24*A*x + x**4*(A**4 - 6*A**2*B**2 + B**4) + 12*x**2*(A**2 - B**2) + 24)/24,Symbolic,"U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1"
66,Compute $\lim_{x \to 0}\frac{(2 \cos (F x)+4) \csc (F x)}{5 A (F x)^3}-\frac{6}{5 A (F x)^4}$,\frac{1}{A 150},1/(150*A),Symbolic,"U-Math
sequences_series
068e40ce-9108-4ef8-8ee5-0d1471ebbe43"
67,"Evaluate 
$ \lim_{x \to 0^+} A \left( \frac{ \tan\left( \frac{B x}{2} \right) }{ \frac{B x}{2} } \right)^{ \frac{F 3}{(B x)^2} } $",$A /cdot e^{\frac{F}{4}}$,A*e**(F/4),Symbolic,"U-Math
differential_calc
363dd580-f1fc-4867-a6ef-db2a03139745"
68,"Evaluate
$ \lim_{x \to A 5} \left( \frac{ 3 B x }{ x - 5 A }-\frac{ 3 B }{ \ln\left(\frac{ x }{ 5 A }\right) } \right)^{F} $
",\left( \frac{3B}{2} \right)^F,(3*B/2)**F,Symbolic,"U-Math
differential_calc
2d799998-115a-489b-a48b-57090954303e"
69,"Evaluate
$ \lim_{x \to \infty} \left(A x - A F x^2 \cdot \ln\left(1 + \frac{ 1 }{ F x }\right)\right)^(1 B) $
",\left(\frac{A}{2 F}\right)^{B},(A/(2*F))**B,Symbolic,"U-Math
differential_calc
efdc4110-cf56-4f37-bf54-40fdd5d58145"
70,"Evaluate
$ \lim_{x \to 0^+} F \left( \frac{\tan(A x)}{A x} \right)^{\frac{1 H}{3 B x^2}} $",F e^{\frac{A^{2} H}{9 B}},F*e**((A**2*H)/((9*B))),Symbolic,"U-Math
differential_calc
99a2304d-5d8e-4245-90da-a80651ca15d8"
71,"Evaluate 
$ \lim_{x \to 0} \left| F \left( \frac{-\sin(A x)}{A x} \right)^{\frac{1}{4 B x^2}} \right| $",\left( e^{-\frac{A^2}{6B}} \right)^{\frac{1}{4}} \left| F \right|,"(exp(-A**2 / (6 * B)))**Rational(1, 4) * Abs(F)",Symbolic,"U-Math
differential_calc
84c6a419-c103-41d5-aad5-dd8e690c6e88"
72,"Integrate
$ \int B \sin(F x)^4 \cdot \cos(F x)^6 dx $",\frac{\frac{B \sin{\left(2 F x \right)}}{512} - \frac{B \sin{\left(4 F x \right)}}{256} - \frac{B \sin{\left(6 F x \right)}}{1024} + \frac{B \sin{\left(8 F x \right)}}{2048} + \frac{B \sin{\left(10 F x \right)}}{5120} + \frac{F x \left(256 A + 3 B\right)}{256}}{F},(3*B*x)/256 + (B*sin(2*F*x))/(512*F) - (B*sin(4*F*x))/(256*F) - (B*sin(6*F*x))/(1024*F) + (B*sin(8*F*x))/(2048*F) + (B*sin(10*F*x))/(5120*F),Symbolic ,"U-Math
integral_calc
0c0ba3db-1470-4c36-975c-91ff5f51986f"
73,"Solve the following integral. Assume A,B,F,G are real and positive.
$ \int \frac{A \sqrt[5]{x} + B x^{4/5} + F x^{6/5}}{x \left(1 G+x^{2/5}\right)}   dx $","\frac{5}{4} \left(\frac{4 A \tan ^{-1}\left(\frac{\sqrt[5]{x}}{\sqrt{G}}\right)}{\sqrt{G}}+2 x^{2/5} (B-F G)+2 G (F G-B) \log
   \left(G+x^{2/5}\right)+F x^{4/5}\right)","(5/4)*(F*x**(4/5) + ((2*(x**(2/5)*(B - F*G)) + (4*(A*atan(x**(1/5)/(sqrt(G)))))/(sqrt(G))) + 2*(G*(-B + F*G)*log(G + x**(2/5), E))))",Symbolic,"U-Math
integral_calc
126c4165-b3d5-4470-8412-08e79d9821cf"
74,"Solve the following integral. Assume A,B,F are real and positive

$ \int \frac{A \csc ^7(F x) \sec (F x)}{1 B}   dx $",-\frac{A \left(2 \csc ^6(F x)+3 \csc ^4(F x)+6 \csc ^2(F x)+12 (\log (\cos (F x))-\log (\sin (F x)))\right)}{12 B F},-A*(-12*log(sin(F*x)) + 12*log(cos(F*x)) + 2*csc(F*x)**6 + 3*csc(F*x)**4 + 6*csc(F*x)**2)/(12*B*F),Symbolic,"U-Math
integral_calc
00f6affb-905a-4109-a78e-2dde7a0b83accf"
75,"Solve the following integral. Assume A,B,F are real and positive.

$ \int -\frac{2 A \sqrt{4 B + (F x)^2}}{ (F x)^4}   dx $",\frac{A \left(4 B+F^2 x^2\right)^{3/2}}{6 B F^4 x^3},A*(4*B + F**2*x**2)**(3/2)/(6*B*F**4*x**3),Symbolic,"U-Math
integral_calc
05ea9929-8cbb-432b-bbbb-ec1e74c9f401"
76,"Solve the following integral. Assume A,B,F are real and positive.

$ \int \left(\frac{B (4 A + F x)}{F x - 4 A}\right)^{3/2}   dx $","\frac{B \sqrt{\frac{B (4 A+F x)}{F x-4 A}} \left(\sqrt{4 A+F x} (F x-20 A)+24 A \sqrt{F x-4 A} \tanh ^{-1}\left(\frac{\sqrt{4
   A+F x}}{\sqrt{F x-4 A}}\right)\right)}{F \sqrt{4 A+F x}}",B*sqrt(-B*(4*A + F*x)/(4*A - F*x))*(24*A*sqrt(-4*A + F*x)*atanh(sqrt(4*A + F*x)/sqrt(-4*A + F*x)) + (-20*A + F*x)*sqrt(4*A + F*x))/(F*sqrt(4*A + F*x)),Symbolic,"U-Math
integral_calc
08c72d46-1abd-49e1-9c9c-ce509902be6e"
77,"Solve the following integral. Assume A,B,F,G are real and positive.

$ \int \frac{ -1 A }{B (F x)^2 \cdot \left(3 G + (F x)^3\right)^{\frac{ 5 }{ 3 }} }   dx $",\frac{A \left(F^3 x^3+2 G\right)}{6 B F^2 G^2 x \left(F^3 x^3+3 G\right)^{2/3}},A*(F**3*x**3 + 2*G)/(6*B*F**2*G**2*x*(F**3*x**3 + 3*G)**(2/3)),Symbolic,"U-Math
integral_calc
4c1292e1-d4b3-4acf-afaf-eaac62f2662d"
78,"Solve the following integral. Assume A,B,F,G,H are real and positive.

$ \int \frac{\sqrt{4 A x-5 B}+4 F x}{5 G \sqrt[4]{4 A x - 5 B} + H (4 A x - 5 B)^{3/4}}   dx $","\frac{\frac{\sqrt{H} \left(20 A^2 H^2 x+375 F G^2 \sqrt{4 A x-5 B}+5 B H \left(12 F H \sqrt{4 A x-5 B}-5 A H+25 F G\right)+A H
   \left(12 F H x \sqrt{4 A x-5 B}-75 G \sqrt{4 A x-5 B}-100 F G x\right)\right)}{\sqrt[4]{4 A x-5 B}}-75 \sqrt{5} \sqrt{G}
   \left(-A G H+B F H^2+5 F G^2\right) \tan ^{-1}\left(\frac{\sqrt{H} \sqrt[4]{4 A x-5 B}}{\sqrt{5} \sqrt{G}}\right)}{15 A^2
   H^{7/2}}",(75*sqrt(5)*sqrt(G)*(4*A*x - 5*B)**(1/4)*(A*G*H - B*F*H**2 - 5*F*G**2)*atan(sqrt(5)*sqrt(H)*(4*A*x - 5*B)**(1/4)/(5*sqrt(G))) + sqrt(H)*(20*A**2*H**2*x + A*H*(-100*F*G*x + 12*F*H*x*sqrt(4*A*x - 5*B) - 75*G*sqrt(4*A*x - 5*B)) + 5*B*H*(-5*A*H + 25*F*G + 12*F*H*sqrt(4*A*x - 5*B)) + 375*F*G**2*sqrt(4*A*x - 5*B)))/(15*A**2*H**(7/2)*(4*A*x - 5*B)**(1/4)),Symbolic,"U-Math
integral_calc
147944c5-b782-48c5-a664-d66deb92d9a7"
79,"Solve the following integral. Assume A,B,F are real and positive.

$ \int \frac{3 A \csc ^7(2 F x) \sec (2 F x)}{1 B}   dx $",-\frac{A \left(2 \csc ^6(2 F x)+3 \csc ^4(2 F x)+6 \csc ^2(2 F x)+12 (\log (\cos (2 F x))-\log (\sin (2 F x)))\right)}{8 B F},-A*(-12*log(sin(2*F*x)) + 12*log(cos(2*F*x)) + 2*csc(2*F*x)**6 + 3*csc(2*F*x)**4 + 6*csc(2*F*x)**2)/(8*B*F),Symbolic,"U-Math
integral_calc
1db212f0-2fac-410d-969d-fe3b5b55d076"
80,"Solve the following integral. Assume A,F are real and positive.

$ \int A \csc^5 (8 F x)   dx $","-\frac{A \left(\csc ^4(4 F x)+6 \csc ^2(4 F x)-\sec ^4(4 F x)-6 \sec ^2(4 F x)+24 (\log (\cos (4 F x))-\log (\sin (4 F
   x)))\right)}{512 F}",-A*(-24*log(sin(4*F*x)) + 24*log(cos(4*F*x)) + csc(4*F*x)**4 + 6*csc(4*F*x)**2 - sec(4*F*x)**4 - 6*sec(4*F*x)**2)/(512*F),Symbolic,"U-Math
integral_calc
275f7ceb-f331-4a3f-96ec-346e6d81b32a"
81,"Solve the following integral. Assume A,B,F are real and positive.

$ \int \cos (2 F x) \left(A (F x)^3+3 B \right)   dx $",\frac{2 \sin (2 F x) \left(A F x \left(2 F^2 x^2-3\right)+6 B\right)+3 A \left(2 F^2 x^2-1\right) \cos (2 F x)}{8 F},((2*A*F*x*(2*F**2*x**2 - 3) + 12*B)*sin(2*F*x) + 3*A*(2*F**2*x**2 - 1)*cos(2*F*x))/(8*F),Symbolic,"U-Math
integral_calc
47a11349-0386-4969-9263-d3cdfcc98cb9"
82,"Use factoring to calculate the following limit.
Assume A,B,F are real and positive.
$ \lim_{x \rightarrow K} \frac{(F x)^{4 B} - K^{4 B}}{A \left((F x)^{5 B}- K^{5 B}\right)} $",\frac{4 K^{-B}}{5 A},4/(5*A*K**B),Symbolic,"UGMathBench
Calculus_-_single_variable_0016"
83,"Calculate the following limit.
Assume A,B,F are real and positive.
$ \frac{1 B - B \cos (10 F x)}{A \cos ^2(6 F x) - 1 A} $",-\frac{25 B}{18 A},-25*B/(18*A),Symbolic,"UGMathBench
Calculus_-_single_variable_0022"
84,"Calculate the following limit.
Assume A,B,F are real and positive.
$ \frac{A (F x)^2+11 A F x - 12 A}{B \log (F x)} $",\frac{13 A}{B},13*A/B,Symbolic,"UGMathBench
Calculus_-_single_variable_0508"
85,"Calculate the following limit.
Assume A,F are real and A>1.

$ \lim\limits_{x\to+\infty} 4^{-\frac{1}{F x}} \left(\frac{(4 A)^{F x} + (6 A)^{F x} }{1 A}\right)^{\frac{1}{F x}} $",6 A,6*A,Symbolic,"UGMathBench
Calculus_-_single_variable_0512"
86,"Calculate the following integral. 
Assume A,B, F are real and positive.
$\int_{2 B}^{\infty} 3 A (F x)^2 e^{- (F x)^3}  dx=$",\frac{A e^{-8 B^3 F^3}}{F},A/(F*e**(8*B**3*F**3)),Symbolic,"UGMathBench
Calculus_-_single_variable_0592"
87,"Evaluate the indefinite integral. 
Assume A, F are real and positive.
$\int A \tan ^3(F x) \sec ^9(F x)   dx$",\frac{A \sec ^9(F x) \left(9 \sec ^2(F x)-11\right)}{99 F},A*(9*sec(F*x)**2 - 11)*sec(F*x)**9/(99*F),Symbolic,"UGMathBench
Calculus_-_single_variable_0604"
88,"Evaluate the indefinite integral.
Assume A, F are real and positive.
$\int 208 A \cos ^4(16 F x)  dx$",\frac{13 A (192 F x+8 \sin (32 F x)+\sin (64 F x))}{32 F},13*A*(192*F*x + 8*sin(32*F*x) + sin(64*F*x))/(32*F),Symbolic,"UGMathBench
Calculus_-_single_variable_0606"
89,"Evaluate the integral.
Assume A, B, F, G are real and positive.
$ \int \frac{-38 A+10 B (F x)^2-48 F G x}{(F x)^3-5 (F x)^2-8 F x+48} dx $",\frac{2 \left(\frac{7 (19 A-80 B+96 G)}{F x-4}+(19 A+200 B-72 G) \log (4-F x)+(-19 A+45 B+72 G) \log (F x+3)\right)}{49 F},2*(133*A - 560*B + 672*G + (F*x - 4)*((-19*A + 45*B + 72*G)*log(F*x + 3) + (19*A + 200*B - 72*G)*log(-F*x + 4)))/(49*F*(F*x - 4)),Symbolic,"UGMathBench
Calculus_-_single_variable_0612"
90,"Evaluate the integral.
Assume A,B,F are real and positive.
$ \int A e^{F x} \sqrt{64 B-e^{2 F x}} \;dx$",\frac{A \left(e^{F x} \sqrt{64 B-e^{2 F x}}+64 B \tan ^{-1}\left(\frac{e^{F x}}{\sqrt{64 B-e^{2 F x}}}\right)\right)}{2 F},A*(64*B*atan(e**(F*x)/sqrt(64*B - e**(2*F*x))) + e**(F*x)*sqrt(64*B - e**(2*F*x)))/(2*F),Symbolic,"UGMathBench
Calculus_-_single_variable_0624"
91,"Evaluate the following limit.
Assume A,B,F are real and positive.
$\lim_{x \to 0} \frac{-\frac{9}{2} (1 B)^2 (F x)^6+3 B F^3 x^3+e^{-3 B (F x)^3}-1}{12 A (F x)^9} $",-\frac{3 B^3}{8 A},-3*B**3/(8*A),Symbolic,"UGMathBench
Calculus_-_single_variable_0939"
92,"Solve the following first-order differential equation:
Assume A,B,F,G are real and positive.
$ A y'(x)+2 B y(x)=F e^{-x}, \quad y(0)=1 G.$","\frac {e^{-\frac{2 B x}{A}} \left(F \left(-e^{x \left(\frac{2 B}{A}-1\right)}\right)+A G-2 B
   G+F\right)}{A-2 B}",(A*G - 2*B*G + F + F*(-e**x*((-A + 2*B)/A)))/(e**(2*B*x/A)*(A - 2*B)),Symbolic,"MathOdyssey
Problem 340 from Differential Equations - College Math"
93,"Consider the differential equation 
$A y'(x)=B x y(x)$. 
Find the value of $y(\sqrt{2})$ given that $y(0) = 2 F$.
Assume A,B,F are real and positive.",2 F e^{\frac{B}{A}},2*F*e**(B/A),Symbolic,"MathOdyssey
Problem 339 from Differential Equations - College Math"
94,"Evaluate the following limit:
$ \lim_{x \to \infty} \sqrt{-(1 B) + H (F x)^2 + 2 F G x}-\sqrt{3 A + H (F x)^2} .$
Assume A,B,F,G,H are real and positive.",\frac{G}{\sqrt{H}},G/sqrt(H),Symbolic,"MathOdyssey
Problem 315 from Calculus and Analysis - College Math"
95,"Evaluate $\lim\limits_{x\to \frac{4 B}{1 F}} \frac{A (F x - 4 B)}{\sqrt{F x}-2 \sqrt{1 B}} $.

Assume A,B,F are real and positive.",4 A \sqrt{B},4*A*sqrt(B),Symbolic,"MathOdyssey
Problem 317 from Calculus and Analysis - College Math"
96,"Evaluate $\int_0^(4 B)  (2 A x - \sqrt{(4 B F)^2 - (F x)^2}) dx$.

Assume A,B,F are real and positive.",\frac{1}{4} B^2 (4 A-\pi  F),B**2*(A - F*pi/4),Symbolic,"MathOdyssey
Problem 325 from Calculus and Analysis - College Math"
97,"Evaluate the series $\sum\limits_{x=1}^\infty \frac{1 A}{B (1 F + x) (1 F+x+2)} $.

Assume A,B,F are real and positive.",\frac{A (2 F+3)}{2 B (F+1) (F+2)},A*(2*F + 3)/(2*(F + 2)*B*(F + 1)),Symbolic,"MathOdyssey
Problem 326 from Calculus and Analysis - College Math"
98,"Evaluate the limit $\lim\limits_{x \to 0} \frac{(A x+1)^{\frac{1}{A x}}-e}{B x} $.

Assume A,B are real and positive.",-\frac{e A}{2 B},-A*e/(2*B),Symbolic,"MathOdyssey
Problem 327 from Calculus and Analysis - College Math"
99,"Evaluate the series $\sum\limits_{n=0}^\infty \frac{ \left(\frac{1}{2 B}\right)^{A (2 n+1)}}{F (2 n+1)} $.

Assume A,B,F are real and positive.",\frac{\tanh ^{-1}\left(2^{-A} \left(\frac{1}{B}\right)^A\right)}{F},atanh((1/(2*B))**A)/F,Symbolic,"MathOdyssey
Problem 328 from Calculus and Analysis - College Math"
100,"Evaluate the limit
$\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1 A}{B \sqrt{F n^2-k^2}}$

Assume A,B, $F \ge 1$ are real and positive.",\frac{A}{B} \arcsin\left(\frac{1}{\sqrt{F}}\right),A*asin(1/sqrt(F))/B,Symbolic,"MathOdyssey
Problem 329 from Calculus and Analysis - College Math"
101,"Evaluate the iterated integral $\int_0^1dy\int_y^1 e^{-A (F x)^2}+B e^{F x} dx$.

Assume A,B,F are real and positive.",\frac{2 A B \left(e^F (F-1)+1\right)-e^{-A F^2}+1}{2 A F^2},(e**(A*F**2)*(2*A*B*(e**F*(F - 1) + 1) + 1) - 1)/(2*A*F**2*e**(A*F**2)),Symbolic,"MathOdyssey
Problem 336 from Calculus and Analysis - College Math"
102,"What is the integral of $ 2 A x-B x^{7 F} \tan ^{-1}(3 G) $

Assume A,B,F,G are real and positive.",x \left(A x-\frac{B x^{7 F} \tan ^{-1}(3 G)}{7 F+1}\right),x*((A*x*(7*F + 1) - B*x**(7*F)*atan(3*G))/(7*F + 1)),Symbolic,"GHOSTS 
Symbolic Integration
Q97"
103,"What is the integral of
$ (1 A) + B F x + \cosh (2 G) (F x)^{3 H} $

Assume A,B,F,G,H are real and positive.",A x+\frac{1}{2} B F x^2+\frac{x \cosh (2 G) (F x)^{3 H}}{3 H+1},x*(2*(F*x)**(3*H)*cosh(2*G) + (2*A + B*F*x)*(3*H + 1))/(2*(3*H + 1)),Symbolic,"GHOSTS 
Symbolic Integration
Q98"
104,"What is the integral of $12 A+6 B \cosh (F x)$

Assume A,B,F are real and positive.",12 A x+\frac{6 B \sinh (F x)}{F},12*A*x + 6*B*sinh(F*x)/F,Symbolic,"GHOSTS 
Symbolic Integration
Q90"
105,"What is the integral of 
$ 4 (B x)^{7 F}+G \sin ((1 H)+A x) $

Assume A,B,F,G,H are real and positive.",\frac{4 A x (B x)^{7 F}-(7 F+1) G \cos (H+A x)}{7 F A+A},(4*A*x*(B*x)**(7*F) - G*(7*F + 1)*cos(H + A*x))/(A*(7*F + 1)),Symbolic,"GHOSTS 
Symbolic Integration
Q14"
106,"What is the integral of
$ 2 x+2 B x^{2 F}+\frac{x}{G x+H x e^{A x}} $.

Assume A,B,F,G,H are real and positive.","x \left(x+\frac{2 B x^{2 F}}{2 F+1}\right)-\frac{\log \left(G A \left(G+H e^{A x}\right)\right)}{G A}+\frac{\log \left(e^{A
   x}\right)}{G A}",(G*A*x*((x*(2*F + 1) + 2*B*x**(2*F))/(2*F + 1)) + log(e**(A*x)) - log(G*A*(G + H*e**(A*x))))/(G*A),Symbolic,"GHOSTS 
Symbolic Integration
Q7"
107,"What is the integral of 
$ B \log (3 H x) \cos (F \log (\sin (3)))-A x $

Assume A,B,F,H are real and positive.",B x (\log (3 H x)-1) \cos (F \log (\sin (3)))-\frac{A x^2}{2},-A*x**2/2 + B*x*(log(3*H*x) - 1)*cos(F*log(sin(3))),Symbolic,"GHOSTS 
Symbolic Integration
Q15"
108,"What is the integral of
$ 3 A x - 4 B (H x)^2 \cos (F x+3 G) $

Assume A,B,F,G,H are real and positive.",\frac{3 A x^2}{2}-\frac{8 B H^2 x \cos (F x+3 G)}{F^2}-\frac{4 B H^2 \left(F^2 x^2-2\right) \sin (F x+3 G)}{F^3},(3*A*F**3*x**2 - 16*B*F*H**2*x*cos(F*x + 3*G) - 8*B*H**2*(F**2*x**2 - 2)*sin(F*x + 3*G))/(2*F**3),Symbolic,"GHOSTS 
Symbolic Integration
Q18"
109,"What is the integral of 
$ A \tan ^{-1}(B x)+F \log (G \tanh (3 H))-3 $

Assume A,B,F,G,H are real and positive.",-\frac{A \log \left(B^2 x^2+1\right)}{2 B}+A x \tan ^{-1}(B x)+x (F \log (G \tanh (3 H))-3),A*x*atan(B*x) - A*log(B**2*x**2 + 1)/(2*B) + x*(F*log(G*tanh(3*H)) - 3),Symbolic,"GHOSTS 
Symbolic Integration
Q20"
110,"What is the integral of
$ A (F x+4 G) (3 F x+4 G) e^{B x (F x+4 G)^2} $

Assume A,B,F,G are real and positive.",\frac{A e^{B x (F x+4 G)^2}}{B},A*e**(B*x*(F*x + 4*G)**2)/B,Symbolic,"GHOSTS 
Symbolic Integration
Q22"
111,"What is the integral of

$ -A e^{3 B x} \sin \left(F e^{3 B x}\right) $

Assume A,B,F are real and positive.",\frac{A \cos \left(F e^{3 B x}\right)}{3 B F},A*cos(F*e**(3*B*x))/(3*B*F),Symbolic,"GHOSTS 
Symbolic Integration
Q29"
112,"If $\log_{2 A} x - 2 F \log _{2 A} y=2 B$, determine $y$, as a function of $x$

Assume A,B,F are real and positive.",e^{\frac{2 F \log (2 A) \log (x)}{\log (2 A)-2 B \log(x)}},e**(-2*F*log(2*A)*log(x)/(2*B*log(x) - log(2*A))),Symbolic,"OlympiadBench
oe_to_maths_en_comp
2498"
113,"If $f(x)=2 A x+ (1 B)$ and $g(f(x)) = 4 F x^{2}+ (1 G)$, determine an expression for $g(x)$.",\frac{F (x-B)^2}{A^2}+G,G + F*(-B + x)**2/A**2,Symbolic,"OlympicArena
Math_1381"
114,"Solve the following integral. Assume A,B,F are real and B>0.

$\int_0^{\frac{\pi}{2 F}} \frac{A x \sin(2 F x)}{(1 B) + \cos^2(2 F x)}   dx$",\frac{A\pi}{4F^2\sqrt{B}} \arctan\!\frac{1}{\sqrt{B}},A*pi*atan(1/sqrt(B))/(4*sqrt(B)*F**2),Symbolic,OBMU 2019 - Q21
115,"Solve the following integral. Assume A,B,F,G are real and positive.

$\int_{1}^{2} \frac{A e^{F x} (F x-1)}{F x \left(B e^{F x}+F G x\right)}   dx$ ",-\frac{A \log \left(\frac{2 (e B+G)}{e^2 B+2 G}\right)}{B F},"-A*log((2*(B*e + G))/(B*e**2 + 2*G), E)/(B*F)",Symbolic,OBMU 2019 - Q18
116,"Solve the following integral. Assume A,B,F are real and positive.

Solve the following integral:
$\int_{0}^{\pi} A \log(B (\sin(x))^{1 F})   dx$",A \pi \log\left(\frac{B}{2^F}\right),"A*(pi*log(B/(2**F), E))",Symbolic ,OBMU 2019 - Q22
117,"Evaluate the following hypergeometric function. Assume the parameters: A,B are real numbers. Return a closed-form symbolic answer.

$ {}_2F_1\left( \begin{array}{c} 1 ,1 \\ 2 \end{array}; (-A)^B \right) $",-(-A)^{-B} \log \left(1-(-A)^B\right),"log(1 - (-A)**B, E)/((-A)**B)",Symbolic ,"ASyMOB
Hypergeometrics
Q1"
118,"Evaluate the following hypergeometric function. Assume the parameters: A,B are real numbers. Return a closed-form symbolic answer.

$ {}_2F_1\left( \begin{array}{c} 1 ,1 \\ 3 \end{array}; -2 \cdot (A^B) \right) $","\frac{1}{2} A^{-2 B} \left(\left(2 A^B+1\right) \log \left(2 A^B+1\right)-2
   A^B\right)","(-2*(A**B) + (2*(A**B) + 1)*log(2*(A**B) + 1, E))/(2*(A**B)**2)",Symbolic ,"ASyMOB
Hypergeometrics
Q2"
119,"Evaluate the following hypergeometric function. Assume the parameters: A,B,G,H are real numbers. Return a closed-form symbolic answer.

$ {}_8F_7\left( \begin{array}{c} 1,1,1, (1 A), (1 B), 1, (1 G), (1 H) \\ 2,2, (1 H), (1 G), (1 B), 1, (1 A) \end{array}; -1 \right) $",\frac{\pi ^2}{12},pi**2/12,Symbolic ,"ASyMOB
Hypergeometrics
Q3"
120,"Evaluate the following hypergeometric function. Assume the parameters: x,A,B,G,H are real numbers. Return a closed-form symbolic answer.

$ {}_3F_2\left( \begin{array}{c} -1,-A, -B \\ -H, -G \end{array}; x \right) $",1-\frac{A B x}{H G},1 - A*(B*x)/(H*G),Symbolic ,"ASyMOB
Hypergeometrics
Q4"
121,"Solve the following integral. Assume the parameters: A,B,F are real numbers. Return a closed-form symbolic answer.

$ \int \frac{ 1 A }{ 1 B + (x F)^3 }   dx $","-\frac{A \left(\log \left(B^{2/3}-\sqrt[3]{B} F x+F^2 x^2\right)-2 \log \left(\sqrt[3]{B}+F x\right)+2 \sqrt{3} \tan
   ^{-1}\left(\frac{1-\frac{2 F x}{\sqrt[3]{B}}}{\sqrt{3}}\right)\right)}{6 B^{2/3} F}",-A*(-2*log(B**(1/3) + F*x) + log(B**(2/3) - B**(1/3)*F*x + F**2*x**2) + 2*sqrt(3)*atan(sqrt(3)*(B**(1/3) - 2*F*x)/(3*B**(1/3))))/(6*B**(2/3)*F),Symbolic ,"ASyMOB
Hypergeometrics
Q5"
122,"Solve the following integral. Assume A,B are positive integers.

$ \int \frac{(4 A + (4 A - (1 B))x^{1 B})x^{2 A - 1}}{2 (1 + x^{1 B} + x^{4 A})\sqrt{1 + x^{1 B}}} dx $",\tan ^{-1}\left(\frac{\left x^A}{\sqrt{x^B+1}}\right),atan(x**A/(sqrt(x**B + 1))),Symbolic ,"ASyMOB
Hypergeometrics
Q6"