|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {K-pop girls groups dataset}, |
|
author={smwoo, Inc. |
|
}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_BASE_URL = "https://drive.google.com/u/0/uc?id=16_GUeJcC88LrB8zJni0-XdjdL14WXOVW&export=download" |
|
|
|
_METADATA_URLS = { |
|
"train": "https://drive.google.com/u/0/uc?id=1mPwH_p1-QQtY0xsFjLIzQLkAXDNyB8sO&export=download", |
|
"test": "https://drive.google.com/u/0/uc?id=1mPwH_p1-QQtY0xsFjLIzQLkAXDNyB8sO&export=download" |
|
} |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to learn how to make custom dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://cislab.cau.ac.kr/" |
|
|
|
_LICENSE = "" |
|
|
|
_IMAGES_DIR = "data/" |
|
|
|
class GirlsGroupsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for GirlsGroups dataset.""" |
|
|
|
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs): |
|
super(GirlsGroupsConfig, self).__init__(version=datasets.Version("1.1.0"), **kwargs) |
|
self.features = features |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
|
|
|
|
class GirlsGroups(datasets.GeneratorBasedBuilder): |
|
"""GirlsGroups Images dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"text": datasets.Value(dtype='string', id=None), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
archive_path = dl_manager.download(_BASE_URL) |
|
split_metadata_paths = dl_manager.download(_METADATA_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": split_metadata_paths["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": split_metadata_paths["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path): |
|
"""Generate images and labels for splits.""" |
|
save_list = {} |
|
with open(metadata_path, newline='') as csvfile: |
|
spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') |
|
for row in spamreader: |
|
save_list[row[0]] = row[1] |
|
for file_path, file_obj in images: |
|
yield file_path, { |
|
"image": {"path": file_path, "bytes": file_obj.read()}, |
|
"text" : save_list[file_path] |
|
} |
|
|