girls-groups / girls-groups.py
SSEONG's picture
Update girls-groups.py
8c5f8c4
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {K-pop girls groups dataset},
author={smwoo, Inc.
},
year={2023}
}
"""
_BASE_URL = "https://drive.google.com/u/0/uc?id=16_GUeJcC88LrB8zJni0-XdjdL14WXOVW&export=download"
_METADATA_URLS = {
"train": "https://drive.google.com/u/0/uc?id=1mPwH_p1-QQtY0xsFjLIzQLkAXDNyB8sO&export=download",
"test": "https://drive.google.com/u/0/uc?id=1mPwH_p1-QQtY0xsFjLIzQLkAXDNyB8sO&export=download"
}
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to learn how to make custom dataset.
"""
_HOMEPAGE = "https://cislab.cau.ac.kr/"
_LICENSE = ""
_IMAGES_DIR = "data/"
class GirlsGroupsConfig(datasets.BuilderConfig):
"""BuilderConfig for GirlsGroups dataset."""
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
super(GirlsGroupsConfig, self).__init__(version=datasets.Version("1.1.0"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class GirlsGroups(datasets.GeneratorBasedBuilder):
"""GirlsGroups Images dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"text": datasets.Value(dtype='string', id=None),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
archive_path = dl_manager.download(_BASE_URL)
split_metadata_paths = dl_manager.download(_METADATA_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": dl_manager.iter_archive(archive_path),
"metadata_path": split_metadata_paths["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"images": dl_manager.iter_archive(archive_path),
"metadata_path": split_metadata_paths["test"],
},
),
]
def _generate_examples(self, images, metadata_path):
"""Generate images and labels for splits."""
save_list = {}
with open(metadata_path, newline='') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')
for row in spamreader:
save_list[row[0]] = row[1]
for file_path, file_obj in images:
yield file_path, {
"image": {"path": file_path, "bytes": file_obj.read()},
"text" : save_list[file_path]
}