File size: 5,580 Bytes
9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 41d70bc 9fcd6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from pathlib import Path
from typing import List
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME
_DATASETNAME = "smsa"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_CITATION = """\
@INPROCEEDINGS{8904199,
author={Purwarianti, Ayu and Crisdayanti, Ida Ayu Putu Ari},
booktitle={2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
title={Improving Bi-LSTM Performance for Indonesian Sentiment Analysis Using Paragraph Vector},
year={2019},
pages={1-5},
doi={10.1109/ICAICTA.2019.8904199}
}
@inproceedings{wilie2020indonlu,
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
author={Wilie, Bryan and Vincentio, Karissa and Winata, Genta Indra and Cahyawijaya, Samuel and Li, Xiaohong and Lim, Zhi Yuan and Soleman, Sidik and Mahendra, Rahmad and Fung, Pascale and Bahar, Syafri and others},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
pages={843--857},
year={2020}
}
"""
_DESCRIPTION = """\
SmSA is a sentence-level sentiment analysis dataset (Purwarianti and Crisdayanti, 2019) is a collection of comments and reviews
in Indonesian obtained from multiple online platforms. The text was crawled and then annotated by several Indonesian linguists
to construct this dataset. There are three possible sentiments on the SmSA dataset: positive, negative, and neutral
"""
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
_URLs = {
"train": "https://github.com/IndoNLP/indonlu/raw/master/dataset/smsa_doc-sentiment-prosa/train_preprocess.tsv",
"validation": "https://github.com/IndoNLP/indonlu/raw/master/dataset/smsa_doc-sentiment-prosa/valid_preprocess.tsv",
"test": "https://github.com/IndoNLP/indonlu/raw/master/dataset/smsa_doc-sentiment-prosa/test_preprocess.tsv",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SMSA(datasets.GeneratorBasedBuilder):
"""SMSA is a sentiment analysis dataset consisting of 3 labels (positive, neutral, and negative) which comes from comments and reviews collected from multiple online platforms."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name="smsa_source",
version=datasets.Version(_SOURCE_VERSION),
description="SMSA source schema",
schema="source",
subset_id="smsa",
),
SEACrowdConfig(
name="smsa_seacrowd_text",
version=datasets.Version(_SEACROWD_VERSION),
description="SMSA Nusantara schema",
schema="seacrowd_text",
subset_id="smsa",
),
]
DEFAULT_CONFIG_NAME = "smsa_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features({"index": datasets.Value("string"), "sentence": datasets.Value("string"), "label": datasets.Value("string")})
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["negative", "neutral", "positive"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
data_files = {
"train": train_tsv_path,
"validation": validation_tsv_path,
"test": test_tsv_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath: Path):
df = pd.read_csv(filepath, sep="\t", header=None).reset_index()
df.columns = ["id", "sentence", "label"]
if self.config.schema == "source":
for row in df.itertuples():
ex = {"index": str(row.id), "sentence": row.sentence, "label": row.label}
yield row.id, ex
elif self.config.schema == "seacrowd_text":
for row in df.itertuples():
ex = {
"id": str(row.id),
"text": row.sentence,
"label": row.label
}
yield row.id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|