Upload sib_200.py with huggingface_hub
Browse files- sib_200.py +244 -0
sib_200.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects.
|
18 |
+
The train/validation/test sets are available for all the 205 languages.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import os
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import List, Tuple, Dict
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
import pandas as pd
|
27 |
+
|
28 |
+
from seacrowd.utils import schemas
|
29 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
30 |
+
from seacrowd.utils.constants import Tasks, Licenses
|
31 |
+
|
32 |
+
_CITATION = """\
|
33 |
+
@misc{adelani2023sib200,
|
34 |
+
title={SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects},
|
35 |
+
author={David Ifeoluwa Adelani and Hannah Liu and Xiaoyu Shen and Nikita Vassilyev and Jesujoba O. Alabi and Yanke Mao and Haonan Gao and Annie En-Shiun Lee},
|
36 |
+
year={2023},
|
37 |
+
eprint={2309.07445},
|
38 |
+
archivePrefix={arXiv},
|
39 |
+
primaryClass={cs.CL}
|
40 |
+
}
|
41 |
+
"""
|
42 |
+
|
43 |
+
_DATASETNAME = "sib_200"
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects.
|
47 |
+
The train/validation/test sets are available for all the 205 languages.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://github.com/dadelani/sib-200"
|
51 |
+
|
52 |
+
_LANGUAGES = [
|
53 |
+
"ace",
|
54 |
+
"ban",
|
55 |
+
"bjn",
|
56 |
+
"bug",
|
57 |
+
"ceb",
|
58 |
+
"ilo",
|
59 |
+
"ind",
|
60 |
+
"jav",
|
61 |
+
"kac",
|
62 |
+
"khm",
|
63 |
+
"lao",
|
64 |
+
"lus",
|
65 |
+
"min",
|
66 |
+
"mya",
|
67 |
+
"pag",
|
68 |
+
"shn",
|
69 |
+
"sun",
|
70 |
+
"tgl",
|
71 |
+
"tha",
|
72 |
+
"vie",
|
73 |
+
"war",
|
74 |
+
"zsm",
|
75 |
+
]
|
76 |
+
|
77 |
+
_SUPPORTED_LANGUAGE_CODES = [
|
78 |
+
"ace_Arab",
|
79 |
+
"ace_Latn",
|
80 |
+
"ban_Latn",
|
81 |
+
"bjn_Arab",
|
82 |
+
"bjn_Latn",
|
83 |
+
"bug_Latn",
|
84 |
+
"ceb_Latn",
|
85 |
+
"ilo_Latn",
|
86 |
+
"ind_Latn",
|
87 |
+
"jav_Latn",
|
88 |
+
"kac_Latn",
|
89 |
+
"khm_Khmr",
|
90 |
+
"lao_Laoo",
|
91 |
+
"lus_Latn",
|
92 |
+
"min_Arab",
|
93 |
+
"min_Latn",
|
94 |
+
"mya_Mymr",
|
95 |
+
"pag_Latn",
|
96 |
+
"shn_Mymr",
|
97 |
+
"sun_Latn",
|
98 |
+
"tgl_Latn",
|
99 |
+
"tha_Thai",
|
100 |
+
"vie_Latn",
|
101 |
+
"war_Latn",
|
102 |
+
"zsm_Latn",
|
103 |
+
]
|
104 |
+
|
105 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
106 |
+
|
107 |
+
_LOCAL = False
|
108 |
+
|
109 |
+
# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
|
110 |
+
_URLS = {
|
111 |
+
"base_url": "https://huggingface.co/datasets/Davlan/sib200/raw/main/data"
|
112 |
+
}
|
113 |
+
|
114 |
+
_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING]
|
115 |
+
|
116 |
+
_SOURCE_VERSION = "1.0.0"
|
117 |
+
|
118 |
+
_SEACROWD_VERSION = "2024.06.20"
|
119 |
+
|
120 |
+
_SEACROWD_SCHEMA = f"seacrowd_text"
|
121 |
+
|
122 |
+
|
123 |
+
def _sib_config_constructor(lang: str, schema: str = _SEACROWD_SCHEMA, version: str = _SEACROWD_VERSION) -> SEACrowdConfig:
|
124 |
+
return SEACrowdConfig(
|
125 |
+
name=f"{_DATASETNAME}_{lang}_{schema}",
|
126 |
+
version=version,
|
127 |
+
description=f"SIB-200 {schema} schema",
|
128 |
+
schema=schema,
|
129 |
+
subset_id=f"SIB-200 {lang}",
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
class Sib200Dataset(datasets.GeneratorBasedBuilder):
|
134 |
+
"""
|
135 |
+
SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects.
|
136 |
+
The train/validation/test sets are available for all the 205 languages.
|
137 |
+
"""
|
138 |
+
|
139 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
140 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
141 |
+
|
142 |
+
def _populate_configs():
|
143 |
+
configs = [_sib_config_constructor(lang, schema="source", version=_SOURCE_VERSION) for lang in _SUPPORTED_LANGUAGE_CODES] + [_sib_config_constructor(lang, schema=_SEACROWD_SCHEMA, version=_SEACROWD_VERSION) for lang in _SUPPORTED_LANGUAGE_CODES]
|
144 |
+
|
145 |
+
all_lang_source_config = SEACrowdConfig(
|
146 |
+
name=f"{_DATASETNAME}_source",
|
147 |
+
version=_SOURCE_VERSION,
|
148 |
+
description=f"SIB-200 source schema",
|
149 |
+
schema="source",
|
150 |
+
subset_id=f"SIB-200 SEA",
|
151 |
+
)
|
152 |
+
|
153 |
+
all_lang_t2t_config = SEACrowdConfig(
|
154 |
+
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
|
155 |
+
version=_SEACROWD_VERSION,
|
156 |
+
description=f"SIB-200 {_SEACROWD_SCHEMA} schema",
|
157 |
+
schema=_SEACROWD_SCHEMA,
|
158 |
+
subset_id=f"SIB-200 SEA",
|
159 |
+
)
|
160 |
+
|
161 |
+
configs.append(all_lang_source_config)
|
162 |
+
configs.append(all_lang_t2t_config)
|
163 |
+
return configs
|
164 |
+
|
165 |
+
BUILDER_CONFIGS = _populate_configs()
|
166 |
+
|
167 |
+
DEFAULT_CONFIG_NAME = "sib_200_source"
|
168 |
+
|
169 |
+
def _info(self) -> datasets.DatasetInfo:
|
170 |
+
|
171 |
+
if self.config.schema == "source":
|
172 |
+
features = datasets.Features(
|
173 |
+
{
|
174 |
+
"index_id": datasets.Value("int64"),
|
175 |
+
"text": datasets.Value("string"),
|
176 |
+
"category": datasets.Value("string"),
|
177 |
+
}
|
178 |
+
)
|
179 |
+
|
180 |
+
elif self.config.schema == "seacrowd_text":
|
181 |
+
features = schemas.text_features(["geography", "science/technology", "health", "travel", "entertainment", "politics", "sports"])
|
182 |
+
|
183 |
+
return datasets.DatasetInfo(
|
184 |
+
description=_DESCRIPTION,
|
185 |
+
features=features,
|
186 |
+
homepage=_HOMEPAGE,
|
187 |
+
license=_LICENSE,
|
188 |
+
citation=_CITATION,
|
189 |
+
)
|
190 |
+
|
191 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
192 |
+
"""Returns SplitGenerators."""
|
193 |
+
# dl_manager not used since dataloader uses HF 'load_dataset'
|
194 |
+
lang = self.config.subset_id.split(" ")[-1]
|
195 |
+
if lang in _SUPPORTED_LANGUAGE_CODES:
|
196 |
+
train_paths = [Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/train.tsv"))]
|
197 |
+
valid_paths = [Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/dev.tsv"))]
|
198 |
+
test_paths = [Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/test.tsv"))]
|
199 |
+
lang_codes = [lang]
|
200 |
+
elif lang == "SEA":
|
201 |
+
train_paths, valid_paths, test_paths, lang_codes = [], [], [], []
|
202 |
+
for lang in _SUPPORTED_LANGUAGE_CODES:
|
203 |
+
train_paths.append(Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/train.tsv")))
|
204 |
+
valid_paths.append(Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/dev.tsv")))
|
205 |
+
test_paths.append(Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/test.tsv")))
|
206 |
+
lang_codes.append(lang)
|
207 |
+
else:
|
208 |
+
raise ValueError(f"Language {lang} not a SEA language in the dataset")
|
209 |
+
return [
|
210 |
+
datasets.SplitGenerator(
|
211 |
+
name=datasets.Split.TRAIN,
|
212 |
+
gen_kwargs={"file_paths": train_paths, "lang_codes": lang_codes}
|
213 |
+
),
|
214 |
+
datasets.SplitGenerator(
|
215 |
+
name=datasets.Split.VALIDATION,
|
216 |
+
gen_kwargs={"file_paths": valid_paths, "lang_codes": lang_codes}
|
217 |
+
),
|
218 |
+
datasets.SplitGenerator(
|
219 |
+
name=datasets.Split.TEST,
|
220 |
+
gen_kwargs={"file_paths": test_paths, "lang_codes": lang_codes}
|
221 |
+
)
|
222 |
+
]
|
223 |
+
|
224 |
+
def _generate_examples(self, file_paths: List[str], lang_codes: List[str]) -> Tuple[int, Dict]:
|
225 |
+
"""Yields examples as (key, example) tuples."""
|
226 |
+
index = 0
|
227 |
+
for file_path, lang_code in zip(file_paths, lang_codes):
|
228 |
+
lang_df = pd.read_csv(file_path, sep='\t')
|
229 |
+
for row in lang_df.itertuples():
|
230 |
+
if self.config.schema == "source":
|
231 |
+
example = {
|
232 |
+
"index_id": row.index_id,
|
233 |
+
"text": row.text,
|
234 |
+
"category": row.category,
|
235 |
+
}
|
236 |
+
|
237 |
+
elif self.config.schema == "seacrowd_text":
|
238 |
+
example = {
|
239 |
+
"id": f'{lang_code}_{row.index_id}',
|
240 |
+
"text": row.text,
|
241 |
+
"label": row.category,
|
242 |
+
}
|
243 |
+
yield index, example
|
244 |
+
index += 1
|