Datasets:
ArXiv:
License:
File size: 13,151 Bytes
78eded3 6d0e5b0 78eded3 6d0e5b0 78eded3 6d0e5b0 78eded3 6d0e5b0 78eded3 6d0e5b0 78eded3 6d0e5b0 78eded3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
license: cc0-1.0
language:
- war
- ceb
- min
- vie
- ilo
- tgl
- lao
- khm
- mya
- jav
- ind
- tha
- sun
- zlm
pretty_name: Oscar 2201
task_categories:
- self-supervised-pretraining
tags:
- self-supervised-pretraining
---
OSCAR or Open Super-large Crawled Aggregated coRpus is a huge multilingual corpus
obtained by language classification and filtering of the Common Crawl corpus using
the ungoliant architecture. Data is distributed by language in both original and
deduplicated form.
## Languages
war, ceb, min, vie, ilo, tgl, lao, khm, mya, jav, ind, tha, sun, zlm
## Supported Tasks
Self Supervised Pretraining
## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/oscar_2201", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("oscar_2201", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("oscar_2201"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
## Dataset Homepage
[https://huggingface.co/datasets/oscar-corpus/OSCAR-2201](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201)
## Dataset Version
Source: 2022.1.0. SEACrowd: 2024.06.20.
## Dataset License
Creative Commons Zero v1.0 Universal (cc0-1.0)
## Citation
If you are using the **Oscar 2201** dataloader in your work, please cite the following:
```
@inproceedings{abadji2022cleaner,
author = {Julien Abadji and
Pedro Javier Ortiz Su{'{a}}rez and
Laurent Romary and
Beno{\^{\i}}t Sagot},
title = {Towards a Cleaner Document-Oriented Multilingual Crawled Corpus},
booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference,
{LREC} 2022, Marseille, France, 20-25 June 2022},
pages = {4344--4355},
publisher = {European Language Resources Association},
year = {2022},
url = {https://aclanthology.org/2022.lrec-1.463},
}
@inproceedings{abadji2021ungoliant,
author = {Julien Abadji and
Pedro Javier Ortiz Su{'a}rez and
Laurent Romary and
Beno{\^i}t Sagot},
title = {Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus},
series = {Proceedings of the Workshop on Challenges in the Management of Large Corpora
(CMLC-9) 2021. Limerick, 12 July 2021 (Online-Event)},
editor = {Harald L{"u}ngen and
Marc Kupietz and
Piotr Bański and
Adrien Barbaresi and
Simon Clematide and
Ines Pisetta},
publisher = {Leibniz-Institut f{"u}r Deutsche Sprache},
address = {Mannheim},
doi = {10.14618/ids-pub-10468},
url = {https://nbn-resolving.org/urn:nbn:de:bsz:mh39-104688},
pages = {1 -- 9},
year = {2021},
abstract = {Since the introduction of large language models in Natural Language
Processing, large raw corpora have played a crucial role in Computational Linguistics.
However, most of these large raw corpora are either available only for English or not
available to the general public due to copyright issues. Nevertheless, there are some
examples of freely available multilingual corpora for training Deep Learning NLP
models, such as the OSCAR and Paracrawl corpora. However, they have quality issues,
especially for low-resource languages. Moreover, recreating or updating these corpora
is very complex. In this work, we try to reproduce and improve the goclassy pipeline
used to create the OSCAR corpus. We propose a new pipeline that is faster, modular,
parameterizable, and well documented. We use it to create a corpus similar to OSCAR
but larger and based on recent data. Also, unlike OSCAR, the metadata information is
at the document level. We release our pipeline under an open source license and
publish the corpus under a research-only license.},
language = {en}
}
@article{kreutzer2022quality,
title = {Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets},
author = {Kreutzer, Julia and
Caswell, Isaac and
Wang, Lisa and
Wahab, Ahsan and
van Esch, Daan and
Ulzii-Orshikh, Nasanbayar and
Tapo, Allahsera and
Subramani, Nishant and
Sokolov, Artem and
Sikasote, Claytone and
Setyawan, Monang and
Sarin, Supheakmungkol and
Samb, Sokhar and
Sagot, Beno{\^\i}t and
Rivera, Clara and
Rios, Annette and
Papadimitriou, Isabel and
Osei, Salomey and
Suarez, Pedro Ortiz and
Orife, Iroro and
Ogueji, Kelechi and
Rubungo, Andre Niyongabo and
Nguyen, Toan Q. and
M{"u}ller, Mathias and
M{"u}ller, Andr{'e} and
Muhammad, Shamsuddeen Hassan and
Muhammad, Nanda and
Mnyakeni, Ayanda and
Mirzakhalov, Jamshidbek and
Matangira, Tapiwanashe and
Leong, Colin and
Lawson, Nze and
Kudugunta, Sneha and
Jernite, Yacine and
Jenny, Mathias and
Firat, Orhan and
Dossou, Bonaventure F. P. and
Dlamini, Sakhile and
de Silva, Nisansa and
{\c{C}}abuk Ball{\i}, Sakine and
Biderman, Stella and
Battisti, Alessia and
Baruwa, Ahmed and
Bapna, Ankur and
Baljekar, Pallavi and
Azime, Israel Abebe and
Awokoya, Ayodele and
Ataman, Duygu and
Ahia, Orevaoghene and
Ahia, Oghenefego and
Agrawal, Sweta and
Adeyemi, Mofetoluwa},
editor = {Roark, Brian and
Nenkova, Ani},
journal = {Transactions of the Association for Computational Linguistics},
volume = {10},
year = {2022},
address = {Cambridge, MA},
publisher = {MIT Press},
url = {https://aclanthology.org/2022.tacl-1.4},
doi = {10.1162/tacl_a_00447},
pages = {50--72},
abstract = {With the success of large-scale pre-training and multilingual modeling in
Natural Language Processing (NLP), recent years have seen a proliferation of large,
Web-mined text datasets covering hundreds of languages. We manually audit the quality
of 205 language-specific corpora released with five major public datasets (CCAligned,
ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At
least 15 corpora have no usable text, and a significant fraction contains less than
50{\%} sentences of acceptable quality. In addition, many are mislabeled or use
nonstandard/ambiguous language codes. We demonstrate that these issues are easy to
detect even for non-proficient speakers, and supplement the human audit with automatic
analyses. Finally, we recommend techniques to evaluate and improve multilingual
corpora and discuss potential risks that come with low-quality data releases.},
}
@inproceedings{ortizsuarez2020monolingual,
title = {A Monolingual Approach to Contextualized Word Embeddings for Mid-Resource Languages},
author = {Ortiz Su{'a}rez, Pedro Javier and
Romary, Laurent and
Sagot, Benoit},
booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
month = {jul},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/2020.acl-main.156},
pages = {1703--1714},
abstract = {We use the multilingual OSCAR corpus, extracted from Common Crawl via
language classification, filtering and cleaning, to train monolingual contextualized
word embeddings (ELMo) for five mid-resource languages. We then compare the
performance of OSCAR-based and Wikipedia-based ELMo embeddings for these languages on
the part-of-speech tagging and parsing tasks. We show that, despite the noise in the
Common-Crawl-based OSCAR data, embeddings trained on OSCAR perform much better than
monolingual embeddings trained on Wikipedia. They actually equal or improve the
current state of the art in tagging and parsing for all five languages. In particular,
they also improve over multilingual Wikipedia-based contextual embeddings
(multilingual BERT), which almost always constitutes the previous state of the art,
thereby showing that the benefit of a larger, more diverse corpus surpasses the
cross-lingual benefit of multilingual embedding architectures.},
}
@inproceedings{ortizsuarez2019asynchronous,
author = {Pedro Javier {Ortiz Su{'a}rez} and
Benoit Sagot and
Laurent Romary},
title = {Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures},
series = {Proceedings of the Workshop on Challenges in the Management of Large Corpora
(CMLC-7) 2019. Cardiff, 22nd July 2019},
editor = {Piotr Bański and
Adrien Barbaresi and
Hanno Biber and
Evelyn Breiteneder and
Simon Clematide and
Marc Kupietz and
Harald L{"u}ngen and
Caroline Iliadi},
publisher = {Leibniz-Institut f{"u}r Deutsche Sprache},
address = {Mannheim},
doi = {10.14618/ids-pub-9021},
url = {http://nbn-resolving.de/urn:nbn:de:bsz:mh39-90215},
pages = {9 -- 16},
year = {2019},
abstract = {Common Crawl is a considerably large, heterogeneous multilingual corpus
comprised of crawled documents from the internet, surpassing 20TB of data and
distributed as a set of more than 50 thousand plain text files where each contains
many documents written in a wide variety of languages. Even though each document has a
metadata block associated to it, this data lacks any information about the language in
which each document is written, making it extremely difficult to use Common Crawl for
monolingual applications. We propose a general, highly parallel, multithreaded
pipeline to clean and classify Common Crawl by language; we specifically design it so
that it runs efficiently on medium to low resource infrastructures where I/O speeds
are the main constraint. We develop the pipeline so that it can be easily reapplied to
any kind of heterogeneous corpus and so that it can be parameterised to a wide range
of infrastructures. We also distribute a 6.3TB version of Common Crawl, filtered,
classified by language, shuffled at line level in order to avoid copyright issues, and
ready to be used for NLP applications.},
language = {en}
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}
``` |