|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{htay2022deep, |
|
title={Deep Siamese Neural Network Vs Random Forest for Myanmar Language Paraphrase Classification}, |
|
author={Htay, Myint Myint and Thu, Ye Kyaw and Thant, Hnin Aye and Supnithi, Thepchai}, |
|
journal={Journal of Intelligent Informatics and Smart Technology}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "my_paraphrase" |
|
|
|
_DESCRIPTION = """\ |
|
The myParaphrase corpus is intended for the task of assessing whether pairs of Burmese sentences exhibit similar meanings \ |
|
or are paraphrases. It encompasses 40461 pairs for training, along with 1000 pairs for an open test and an additional 1000 pairs \ |
|
for a closed test. If a pair of sentences in Burmese is considered a paraphrase, it is labeled with "1"; if not, they receive a label of "0." |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ye-kyaw-thu/myParaphrase" |
|
|
|
_LANGUAGES = ["mya"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: [ |
|
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/train.csv", |
|
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/open-test.final.manual.csv", |
|
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/closed-test.csv", |
|
], |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.PARAPHRASING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
_TAGS = [0, 1] |
|
|
|
|
|
class MyParaphraseDataset(datasets.GeneratorBasedBuilder): |
|
"""The "myParaphrase" corpus is a Burmese dataset used for paraphrase identification. \ |
|
It includes 40,461 training pairs and 2,000 test pairs. Pairs are labeled "1" for paraphrases and "0" otherwise.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_paraphrase", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_paraphrase", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_non_paraphrase_source", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_non_paraphrase", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_non_paraphrase_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_non_paraphrase", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_all_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_all", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_all_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_all", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema.endswith("_source"): |
|
features = datasets.Features({"id": datasets.Value("int32"), "paraphrase1": datasets.Value("string"), "paraphrase2": datasets.Value("string"), "is_paraphrase": datasets.Value("int32")}) |
|
|
|
elif self.config.schema.endswith(self.SEACROWD_SCHEMA_NAME): |
|
features = schemas.text2text_features |
|
|
|
else: |
|
raise ValueError |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
train = dl_manager.download(urls[0]) |
|
open_test = dl_manager.download(urls[1]) |
|
closed_test = dl_manager.download(urls[2]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": train, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": closed_test, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": open_test, |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
columns = ["id", "paraphrase1", "paraphrase2", "is_paraphrase"] |
|
dataset = pd.read_csv(filepath, header=None) |
|
dataset.columns = columns |
|
dataset = dataset.dropna() |
|
|
|
dataset["is_paraphrase"] = dataset["is_paraphrase"].astype(int) |
|
|
|
if self.config.schema in [ |
|
"paraphrase_source", |
|
"non_paraphrase_source", |
|
"all_source", |
|
|
|
]: |
|
for i, row in dataset.iterrows(): |
|
yield i, {"id": i, "paraphrase1": row["paraphrase1"], "paraphrase2": row["paraphrase2"], "is_paraphrase": row["is_paraphrase"]} |
|
|
|
elif self.config.schema == f"seacrowd_paraphrase_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in dataset[dataset["is_paraphrase"] == 1].iterrows(): |
|
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "paraphrased_text"} |
|
|
|
elif self.config.schema == f"seacrowd_non_paraphrase_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in dataset[dataset["is_paraphrase"] == 0].iterrows(): |
|
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "non_paraphrased_text"} |
|
|
|
elif self.config.schema == f"seacrowd_all_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in dataset.iterrows(): |
|
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "paraphrased_text" if row["is_paraphrase"] else "non_paraphrased_text"} |
|
|
|
else: |
|
raise ValueError |