Upload indonglish.py with huggingface_hub
Browse files- indonglish.py +216 -0
indonglish.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import csv
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils import schemas
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@article{Astuti2023,
|
28 |
+
title = {Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data},
|
29 |
+
journal = {International Journal of Advanced Computer Science and Applications},
|
30 |
+
doi = {10.14569/IJACSA.2023.0141053},
|
31 |
+
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141053},
|
32 |
+
year = {2023},
|
33 |
+
publisher = {The Science and Information Organization},
|
34 |
+
volume = {14},
|
35 |
+
number = {10},
|
36 |
+
author = {Laksmita Widya Astuti and Yunita Sari and Suprapto}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DATASETNAME = "indonglish"
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
Indonglish-dataset was constructed based on keywords derived from the
|
43 |
+
sociolinguistic phenomenon observed among teenagers in South Jakarta. The
|
44 |
+
dataset was designed to tackle the semantic task of sentiment analysis,
|
45 |
+
incorporating three distinct label categories: positive, negative, and
|
46 |
+
neutral. The annotation of the dataset was carried out by a panel of five
|
47 |
+
annotators, each possessing expertise language and data science.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://github.com/laksmitawidya/indonglish-dataset"
|
51 |
+
_LANGUAGES = ["ind"]
|
52 |
+
_LICENSE = Licenses.UNKNOWN.value
|
53 |
+
_LOCAL = False
|
54 |
+
|
55 |
+
_URLS = {
|
56 |
+
"skenario-orig": {
|
57 |
+
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/train.csv",
|
58 |
+
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/validation.csv",
|
59 |
+
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/test.csv",
|
60 |
+
},
|
61 |
+
"skenario1": {
|
62 |
+
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/training.csv",
|
63 |
+
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/validation.csv",
|
64 |
+
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/test.csv",
|
65 |
+
},
|
66 |
+
"skenario2": {
|
67 |
+
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/training.csv",
|
68 |
+
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/validation.csv",
|
69 |
+
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/test.csv",
|
70 |
+
},
|
71 |
+
"skenario3": {
|
72 |
+
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/training.csv",
|
73 |
+
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/validation.csv",
|
74 |
+
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/test.csv",
|
75 |
+
},
|
76 |
+
}
|
77 |
+
|
78 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
79 |
+
|
80 |
+
_SOURCE_VERSION = "1.0.0"
|
81 |
+
_SEACROWD_VERSION = "2024.06.20"
|
82 |
+
|
83 |
+
|
84 |
+
class Indonglish(datasets.GeneratorBasedBuilder):
|
85 |
+
"""Indonglish dataset for sentiment analysis from https://github.com/laksmitawidya/indonglish-dataset."""
|
86 |
+
|
87 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
88 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
89 |
+
|
90 |
+
SEACROWD_SCHEMA_NAME = "text"
|
91 |
+
_LABELS = ["Positif", "Negatif", "Netral"]
|
92 |
+
|
93 |
+
BUILDER_CONFIGS = [
|
94 |
+
SEACrowdConfig(
|
95 |
+
name=f"{_DATASETNAME}_source",
|
96 |
+
version=SOURCE_VERSION,
|
97 |
+
description=f"{_DATASETNAME} source schema",
|
98 |
+
schema="source",
|
99 |
+
subset_id=_DATASETNAME,
|
100 |
+
),
|
101 |
+
SEACrowdConfig(
|
102 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
103 |
+
version=SEACROWD_VERSION,
|
104 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
105 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
106 |
+
subset_id=_DATASETNAME,
|
107 |
+
),
|
108 |
+
]
|
109 |
+
for i in range(1, 4):
|
110 |
+
BUILDER_CONFIGS += [
|
111 |
+
SEACrowdConfig(
|
112 |
+
name=f"{_DATASETNAME}_skenario{i}_source",
|
113 |
+
version=SOURCE_VERSION,
|
114 |
+
description=f"{_DATASETNAME} source schema",
|
115 |
+
schema="source",
|
116 |
+
subset_id=f"{_DATASETNAME}_skenario{i}",
|
117 |
+
),
|
118 |
+
SEACrowdConfig(
|
119 |
+
name=f"{_DATASETNAME}_skenario{i}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
120 |
+
version=SEACROWD_VERSION,
|
121 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
122 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
123 |
+
subset_id=f"{_DATASETNAME}_skenario{i}",
|
124 |
+
),
|
125 |
+
]
|
126 |
+
|
127 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
128 |
+
|
129 |
+
def _info(self) -> datasets.DatasetInfo:
|
130 |
+
|
131 |
+
if self.config.schema == "source":
|
132 |
+
features = datasets.Features(
|
133 |
+
{
|
134 |
+
"id": datasets.Value("string"),
|
135 |
+
"tweet": datasets.Value("string"),
|
136 |
+
"label": datasets.ClassLabel(names=self._LABELS),
|
137 |
+
}
|
138 |
+
)
|
139 |
+
|
140 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
141 |
+
features = schemas.text_features(self._LABELS)
|
142 |
+
|
143 |
+
return datasets.DatasetInfo(
|
144 |
+
description=_DESCRIPTION,
|
145 |
+
features=features,
|
146 |
+
homepage=_HOMEPAGE,
|
147 |
+
license=_LICENSE,
|
148 |
+
citation=_CITATION,
|
149 |
+
)
|
150 |
+
|
151 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
152 |
+
"""Returns SplitGenerators."""
|
153 |
+
|
154 |
+
if "skenario" in self.config.name:
|
155 |
+
setting = self.config.name.split("_")[1]
|
156 |
+
else:
|
157 |
+
setting = "skenario-orig"
|
158 |
+
|
159 |
+
data_paths = {
|
160 |
+
setting: {
|
161 |
+
"train": Path(dl_manager.download_and_extract(_URLS[setting]["train"])),
|
162 |
+
"validation": Path(dl_manager.download_and_extract(_URLS[setting]["validation"])),
|
163 |
+
"test": Path(dl_manager.download_and_extract(_URLS[setting]["test"])),
|
164 |
+
}
|
165 |
+
}
|
166 |
+
|
167 |
+
return [
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=datasets.Split.TRAIN,
|
170 |
+
gen_kwargs={
|
171 |
+
"filepath": data_paths[setting]["train"],
|
172 |
+
"split": "train",
|
173 |
+
},
|
174 |
+
),
|
175 |
+
datasets.SplitGenerator(
|
176 |
+
name=datasets.Split.TEST,
|
177 |
+
gen_kwargs={
|
178 |
+
"filepath": data_paths[setting]["test"],
|
179 |
+
"split": "test",
|
180 |
+
},
|
181 |
+
),
|
182 |
+
datasets.SplitGenerator(
|
183 |
+
name=datasets.Split.VALIDATION,
|
184 |
+
gen_kwargs={
|
185 |
+
"filepath": data_paths[setting]["validation"],
|
186 |
+
"split": "dev",
|
187 |
+
},
|
188 |
+
),
|
189 |
+
]
|
190 |
+
|
191 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
192 |
+
"""Yields examples as (key, example) tuples."""
|
193 |
+
|
194 |
+
# read csv file
|
195 |
+
with open(filepath, "r", encoding="utf-8") as csv_file:
|
196 |
+
csv_reader = csv.reader(csv_file)
|
197 |
+
csv_data = [row for row in csv_reader]
|
198 |
+
csv_data = csv_data[1:] # remove header
|
199 |
+
|
200 |
+
num_sample = len(csv_data)
|
201 |
+
|
202 |
+
for i in range(num_sample):
|
203 |
+
if self.config.schema == "source":
|
204 |
+
example = {
|
205 |
+
"id": str(i),
|
206 |
+
"tweet": csv_data[i][0],
|
207 |
+
"label": csv_data[i][1],
|
208 |
+
}
|
209 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
210 |
+
example = {
|
211 |
+
"id": str(i),
|
212 |
+
"text": csv_data[i][0],
|
213 |
+
"label": csv_data[i][1],
|
214 |
+
}
|
215 |
+
|
216 |
+
yield i, example
|