File size: 7,224 Bytes
923ae04 1d0f462 923ae04 1d0f462 923ae04 1d0f462 923ae04 1d0f462 923ae04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from pathlib import Path
from typing import List
import datasets
import pandas as pd
import codecs
from collections import namedtuple
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
_DATASETNAME = "barasa"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["ind"] # We follow ISO639-3 langauge code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_CITATION = """\
@inproceedings{baccianella-etal-2010-sentiwordnet,
title = "{S}enti{W}ord{N}et 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining",
author = "Baccianella, Stefano and
Esuli, Andrea and
Sebastiani, Fabrizio",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf",
abstract = "In this work we present SENTIWORDNET 3.0, a lexical resource explicitly devised for supporting sentiment classification and opinion mining applications. SENTIWORDNET 3.0 is an improved version of SENTIWORDNET 1.0, a lexical resource publicly available for research purposes, now currently licensed to more than 300 research groups and used in a variety of research projects worldwide. Both SENTIWORDNET 1.0 and 3.0 are the result of automatically annotating all WORDNET synsets according to their degrees of positivity, negativity, and neutrality. SENTIWORDNET 1.0 and 3.0 differ (a) in the versions of WORDNET which they annotate (WORDNET 2.0 and 3.0, respectively), (b) in the algorithm used for automatically annotating WORDNET, which now includes (additionally to the previous semi-supervised learning step) a random-walk step for refining the scores. We here discuss SENTIWORDNET 3.0, especially focussing on the improvements concerning aspect (b) that it embodies with respect to version 1.0. We also report the results of evaluating SENTIWORDNET 3.0 against a fragment of WORDNET 3.0 manually annotated for positivity, negativity, and neutrality; these results indicate accuracy improvements of about 20{\%} with respect to SENTIWORDNET 1.0.",
}
@misc{moeljadi_2016,
title={Neocl/Barasa: Indonesian SentiWordNet},
url={https://github.com/neocl/barasa},
journal={GitHub},
author={Moeljadi, David},
year={2016}, month={Mar}
}
"""
_DESCRIPTION = """\
The Barasa dataset is an Indonesian SentiWordNet for sentiment analysis.
For each term, the pair (POS,ID) uniquely identifies a WordNet (3.0) synset and there are PosScore and NegScore to show the positivity and negativity of the term.
The objectivity score can be calculated as: ObjScore = 1 - (PosScore + NegScore).
"""
_HOMEPAGE = "https://github.com/neocl/barasa"
_LICENSE = "MIT"
_URLs = {
"senti_wordnet": "https://github.com/neocl/barasa/raw/master/data/SentiWordNet_3.0.0_20130122.txt",
"tab": "https://github.com/neocl/barasa/raw/55f669ca3e417e7fa8d0ebafb67700b9c9eeff1d/data/wn-msa-all.tab",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = None
class Barasa(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
SEACrowdConfig(
name="barasa_source",
version=datasets.Version(_SOURCE_VERSION),
description="Barasa source schema",
schema="source",
subset_id="barasa",
),
]
DEFAULT_CONFIG_NAME = "barasa_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("string"),
"synset": datasets.Value("string"),
"PosScore": datasets.Value("float32"),
"NegScore": datasets.Value("float32"),
"language": datasets.Value("string"),
"goodness": datasets.Value("string"),
"lemma": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
sentiWordnet_tsv_path = Path(dl_manager.download_and_extract(_URLs["senti_wordnet"]))
tab_path = Path(dl_manager.download_and_extract(_URLs["tab"]))
data_files = {
"sentiWordnet": sentiWordnet_tsv_path,
"tab": tab_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": [data_files["sentiWordnet"], data_files["tab"]]},
),
]
def _generate_examples(self, filepath: Path):
lines = self.gen_barasa(filepath[0], filepath[1])
if self.config.schema == "source":
for i, row in enumerate(lines):
synset, language, goodness, lemma, PosScore, NegScore = row.split('\t')[:6]
PosScore = float(PosScore)
NegScore = float(NegScore)
ex = {
"index": i,
"synset": synset,
"PosScore": PosScore,
"NegScore": NegScore,
"language": language,
"goodness": goodness,
"lemma": lemma,
}
yield i, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
def gen_barasa(self, SENTI_WORDNET_FILE, BAHASA_WORDNET_FILE):
SynsetInfo = namedtuple('SynsetInfo', ['synset', 'pos', 'neg'])
LemmaInfo = namedtuple('LemmaInfo', ['lemma', 'pos', 'neg'])
SYNSET_SCORE = {}
LEMMA_SCORE = {}
with codecs.open(SENTI_WORDNET_FILE, encoding='utf-8', mode='r') as SentiWN:
for line in SentiWN.readlines():
if line.startswith('#') or len(line.strip()) == 0: # ignore comments
continue
# strip off end-of-line, then split
pos, snum, pscore, nscore, lemma, definition = line.strip().split('\t')
synset = '%s-%s' % (snum, pos)
SYNSET_SCORE[synset] = SynsetInfo(synset, pscore, nscore)
newlines = []
with codecs.open(BAHASA_WORDNET_FILE, encoding='utf-8', mode='r') as BahasaWN:
for line in BahasaWN.readlines():
synset, lang, goodness, lemma = line.strip().split('\t')
if synset in SYNSET_SCORE:
sscore = SYNSET_SCORE[synset]
LEMMA_SCORE[lemma] = LemmaInfo(lemma, sscore.pos, sscore.neg)
newline = ("%s\t" * 6) % (synset, lang, goodness, lemma, sscore.pos, sscore.neg)
newlines.append(newline)
return newlines |