File size: 5,000 Bytes
bb2026b
b11c16e
bb2026b
b11c16e
bb2026b
 
 
 
 
b11c16e
 
 
 
 
 
bb2026b
 
 
 
 
 
 
 
9985e9b
b11c16e
bb2026b
 
9985e9b
 
bb2026b
 
 
 
9985e9b
bb2026b
9985e9b
bb2026b
9985e9b
bb2026b
9985e9b
 
 
b11c16e
bb2026b
 
 
 
 
 
 
 
 
 
 
b11c16e
 
 
bb2026b
b11c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2026b
 
 
 
 
 
 
b11c16e
bb2026b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

---
language: 
- ind
pretty_name: Barasa
task_categories: 
- sentiment-analysis
tags: 
- sentiment-analysis
---

The Barasa dataset is an Indonesian SentiWordNet for sentiment analysis.
For each term, the pair (POS,ID) uniquely identifies a WordNet (3.0) synset and there are PosScore and NegScore to show the positivity and negativity of the term.
The objectivity score can be calculated as: ObjScore = 1 - (PosScore + NegScore).


## Languages

ind

## Supported Tasks

Sentiment Analysis

## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/barasa", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("barasa", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("barasa"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```

More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).


## Dataset Homepage

[https://github.com/neocl/barasa](https://github.com/neocl/barasa)

## Dataset Version

Source: 1.0.0. SEACrowd: None.

## Dataset License

MIT

## Citation

If you are using the **Barasa** dataloader in your work, please cite the following:
```
@inproceedings{baccianella-etal-2010-sentiwordnet,
    title = "{S}enti{W}ord{N}et 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining",
    author = "Baccianella, Stefano  and
      Esuli, Andrea  and
      Sebastiani, Fabrizio",
    booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
    month = may,
    year = "2010",
    address = "Valletta, Malta",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf",
    abstract = "In this work we present SENTIWORDNET 3.0, a lexical resource explicitly devised for supporting sentiment classification and opinion mining applications. SENTIWORDNET 3.0 is an improved version of SENTIWORDNET 1.0, a lexical resource publicly available for research purposes, now currently licensed to more than 300 research groups and used in a variety of research projects worldwide. Both SENTIWORDNET 1.0 and 3.0 are the result of automatically annotating all WORDNET synsets according to their degrees of positivity, negativity, and neutrality. SENTIWORDNET 1.0 and 3.0 differ (a) in the versions of WORDNET which they annotate (WORDNET 2.0 and 3.0, respectively), (b) in the algorithm used for automatically annotating WORDNET, which now includes (additionally to the previous semi-supervised learning step) a random-walk step for refining the scores. We here discuss SENTIWORDNET 3.0, especially focussing on the improvements concerning aspect (b) that it embodies with respect to version 1.0. We also report the results of evaluating SENTIWORDNET 3.0 against a fragment of WORDNET 3.0 manually annotated for positivity, negativity, and neutrality; these results indicate accuracy improvements of about 20{\%} with respect to SENTIWORDNET 1.0.",
}

@misc{moeljadi_2016,
    title={Neocl/Barasa: Indonesian SentiWordNet},
    url={https://github.com/neocl/barasa},
    journal={GitHub},
    author={Moeljadi, David},
    year={2016}, month={Mar}
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```