Create generation_script.py
Browse files- generation_script.py +342 -0
generation_script.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!pip install PyPDF2 google google-genai requests python-dotenv datasets huggingface_hub
|
| 2 |
+
|
| 3 |
+
"""# Libraries"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import requests
|
| 7 |
+
import json
|
| 8 |
+
from bs4 import BeautifulSoup
|
| 9 |
+
import PyPDF2
|
| 10 |
+
from google import genai
|
| 11 |
+
from google.genai import types
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from datasets import Dataset
|
| 15 |
+
from huggingface_hub import login
|
| 16 |
+
|
| 17 |
+
"""# Get files"""
|
| 18 |
+
|
| 19 |
+
# Main page URL
|
| 20 |
+
main_url = 'https://www.sspa.juntadeandalucia.es/servicioandaluzdesalud/profesionales/ofertas-de-empleo/oferta-de-empleo-publico-puestos-base/oep-extraordinaria-decreto-ley-122022-centros-sas/cuadro-de-evolucion-concurso-oposicion-centros-sas'
|
| 21 |
+
|
| 22 |
+
# Main folder where exams will be saved
|
| 23 |
+
exams_folder = "exams"
|
| 24 |
+
os.makedirs(exams_folder, exist_ok=True)
|
| 25 |
+
|
| 26 |
+
# Perform an HTTP GET request to the main page
|
| 27 |
+
main_response = requests.get(main_url)
|
| 28 |
+
|
| 29 |
+
if main_response.status_code == 200:
|
| 30 |
+
main_soup = BeautifulSoup(main_response.content, 'html.parser')
|
| 31 |
+
|
| 32 |
+
# Find all tables on the main page
|
| 33 |
+
tables = main_soup.find_all('table')
|
| 34 |
+
|
| 35 |
+
for table in tables:
|
| 36 |
+
links = table.find_all('a', href=True)
|
| 37 |
+
for link in links:
|
| 38 |
+
secondary_url = link['href']
|
| 39 |
+
if secondary_url.startswith('/'):
|
| 40 |
+
secondary_url = 'https://www.sspa.juntadeandalucia.es' + secondary_url
|
| 41 |
+
|
| 42 |
+
folder_name = link.text.strip().replace("/", "-") # Replace invalid characters
|
| 43 |
+
folder_path = os.path.join(exams_folder, folder_name)
|
| 44 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 45 |
+
|
| 46 |
+
secondary_response = requests.get(secondary_url)
|
| 47 |
+
if secondary_response.status_code == 200:
|
| 48 |
+
secondary_soup = BeautifulSoup(secondary_response.content, 'html.parser')
|
| 49 |
+
secondary_tables = secondary_soup.find_all('table')
|
| 50 |
+
|
| 51 |
+
for secondary_table in secondary_tables:
|
| 52 |
+
exam_booklet_links = secondary_table.find_all('a', title='Cuadernillo de Examen', href=True)
|
| 53 |
+
answer_sheet_links = secondary_table.find_all('a', title='Plantilla de respuestas', href=True)
|
| 54 |
+
|
| 55 |
+
for exam_booklet_link in exam_booklet_links:
|
| 56 |
+
pdf_url = exam_booklet_link['href']
|
| 57 |
+
if pdf_url.startswith('/'):
|
| 58 |
+
pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url
|
| 59 |
+
pdf_response = requests.get(pdf_url)
|
| 60 |
+
if pdf_response.status_code == 200:
|
| 61 |
+
file_path = os.path.join(folder_path, 'Exam_Booklet.pdf')
|
| 62 |
+
with open(file_path, 'wb') as pdf_file:
|
| 63 |
+
pdf_file.write(pdf_response.content)
|
| 64 |
+
print(f'Exam Booklet saved at: {file_path}')
|
| 65 |
+
|
| 66 |
+
for answer_sheet_link in answer_sheet_links:
|
| 67 |
+
pdf_url = answer_sheet_link['href']
|
| 68 |
+
if pdf_url.startswith('/'):
|
| 69 |
+
pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url
|
| 70 |
+
pdf_response = requests.get(pdf_url)
|
| 71 |
+
if pdf_response.status_code == 200:
|
| 72 |
+
file_path = os.path.join(folder_path, 'Answer_Sheet.pdf')
|
| 73 |
+
with open(file_path, 'wb') as pdf_file:
|
| 74 |
+
pdf_file.write(pdf_response.content)
|
| 75 |
+
print(f'Answer Sheet saved at: {file_path}')
|
| 76 |
+
|
| 77 |
+
else:
|
| 78 |
+
print(f'Error accessing the main page: {main_response.status_code}')
|
| 79 |
+
|
| 80 |
+
"""# Configure apikey"""
|
| 81 |
+
|
| 82 |
+
load_dotenv()
|
| 83 |
+
GEMINI_API_KEY = "AIzaSyB46xwQbdXC_TK3Wnl3kt-oXtqKN8dRYfI"
|
| 84 |
+
# TODO: PONER AQUI EL TOKEN
|
| 85 |
+
HF_TOKEN= ""
|
| 86 |
+
HF_DATASET_NAME="RafaelJaime/sas_opposition_exam_data"
|
| 87 |
+
|
| 88 |
+
"""# PDF processing
|
| 89 |
+
|
| 90 |
+
## Extract text
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
| 94 |
+
with open(pdf_path, "rb") as file:
|
| 95 |
+
reader = PyPDF2.PdfReader(file)
|
| 96 |
+
text = ""
|
| 97 |
+
for page in reader.pages:
|
| 98 |
+
text += page.extract_text()
|
| 99 |
+
return text
|
| 100 |
+
|
| 101 |
+
"""## Number of questions"""
|
| 102 |
+
|
| 103 |
+
import base64
|
| 104 |
+
import os
|
| 105 |
+
from google import genai
|
| 106 |
+
from google.genai import types
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def generate_number_questions(text):
|
| 110 |
+
client = genai.Client(
|
| 111 |
+
api_key=GEMINI_API_KEY,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
model = "gemini-2.0-flash"
|
| 115 |
+
contents = [
|
| 116 |
+
types.Content(
|
| 117 |
+
role="user",
|
| 118 |
+
parts=[
|
| 119 |
+
types.Part.from_text(text=f"""tell me how many questions you have in format {{"number": "numberofquestionsinteger"}} in the following text: {text}"""),
|
| 120 |
+
],
|
| 121 |
+
),
|
| 122 |
+
]
|
| 123 |
+
generate_content_config = types.GenerateContentConfig(
|
| 124 |
+
temperature=1,
|
| 125 |
+
top_p=0.95,
|
| 126 |
+
top_k=40,
|
| 127 |
+
max_output_tokens=8192,
|
| 128 |
+
response_mime_type="application/json",
|
| 129 |
+
)
|
| 130 |
+
response = client.models.generate_content(
|
| 131 |
+
model=model,
|
| 132 |
+
contents=contents,
|
| 133 |
+
config=generate_content_config,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
return response.candidates[0].content.parts[0].text
|
| 137 |
+
|
| 138 |
+
"""## Process with llm"""
|
| 139 |
+
|
| 140 |
+
import json
|
| 141 |
+
import os
|
| 142 |
+
from google import genai
|
| 143 |
+
from google.genai import types
|
| 144 |
+
|
| 145 |
+
def process_with_gemini(text: str, start: int, end: int):
|
| 146 |
+
client = genai.Client(
|
| 147 |
+
api_key=GEMINI_API_KEY
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
model = "gemini-2.0-flash"
|
| 151 |
+
contents = [
|
| 152 |
+
types.Content(
|
| 153 |
+
role="user",
|
| 154 |
+
parts=[
|
| 155 |
+
types.Part.from_text(text=f"""
|
| 156 |
+
Given the following text of an exam with questions and answers, extract each question and its possible answers.
|
| 157 |
+
Format the output as a list of JSON with the following format, I want you to extract questions from {start} to {end}:
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
{{{{"question number in integer format": {{"statement": "question text", "answers": ["option A", "option B", ...]}}}}}}
|
| 161 |
+
|
| 162 |
+
Exam text:
|
| 163 |
+
{text}
|
| 164 |
+
"""),
|
| 165 |
+
],
|
| 166 |
+
),
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
generate_content_config = types.GenerateContentConfig(
|
| 170 |
+
temperature=1,
|
| 171 |
+
top_p=0.95,
|
| 172 |
+
top_k=40,
|
| 173 |
+
max_output_tokens=32768,
|
| 174 |
+
response_mime_type="application/json",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Use generate_content() instead of streaming
|
| 178 |
+
response = client.models.generate_content(
|
| 179 |
+
model=model,
|
| 180 |
+
contents=contents,
|
| 181 |
+
config=generate_content_config,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
return response.text # Return the response instead of printing it
|
| 185 |
+
|
| 186 |
+
"""# Collect the questions"""
|
| 187 |
+
|
| 188 |
+
import json
|
| 189 |
+
import os
|
| 190 |
+
from google import genai
|
| 191 |
+
from google.genai import types
|
| 192 |
+
|
| 193 |
+
def process_answers_with_gemini(text: str):
|
| 194 |
+
client = genai.Client(
|
| 195 |
+
api_key=GEMINI_API_KEY
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
model = "gemini-2.0-flash"
|
| 199 |
+
contents = [
|
| 200 |
+
types.Content(
|
| 201 |
+
role="user",
|
| 202 |
+
parts=[
|
| 203 |
+
types.Part.from_text(text=f"""
|
| 204 |
+
Please return the question number and the correct answers in format ['question number': 'answer letter','question number': 'answer letter'] from the following text
|
| 205 |
+
{text}
|
| 206 |
+
"""),
|
| 207 |
+
],
|
| 208 |
+
),
|
| 209 |
+
]
|
| 210 |
+
|
| 211 |
+
generate_content_config = types.GenerateContentConfig(
|
| 212 |
+
temperature=1,
|
| 213 |
+
top_p=0.95,
|
| 214 |
+
top_k=40,
|
| 215 |
+
max_output_tokens=32768,
|
| 216 |
+
response_mime_type="application/json",
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Use generate_content() instead of streaming
|
| 220 |
+
response = client.models.generate_content(
|
| 221 |
+
model=model,
|
| 222 |
+
contents=contents,
|
| 223 |
+
config=generate_content_config,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
return response.text # Return the response instead of printing it
|
| 227 |
+
|
| 228 |
+
def process_pdf_file(pdf_path: str, answers_pdf_path: str, theme: str) -> pd.DataFrame:
|
| 229 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
| 230 |
+
result = generate_number_questions(pdf_text)
|
| 231 |
+
question_text = extract_text_from_pdf(answers_pdf_path)
|
| 232 |
+
|
| 233 |
+
# Process number of questions
|
| 234 |
+
try:
|
| 235 |
+
result_dict = json.loads(result)
|
| 236 |
+
except json.JSONDecodeError:
|
| 237 |
+
print("Error: The question count response is not valid JSON.")
|
| 238 |
+
return pd.DataFrame()
|
| 239 |
+
|
| 240 |
+
question_count = result_dict.get("number", "unknown")
|
| 241 |
+
print(f"The exam {pdf_path} contains {question_count} questions.")
|
| 242 |
+
|
| 243 |
+
try:
|
| 244 |
+
question_count = int(result_dict.get("number", 0))
|
| 245 |
+
except ValueError:
|
| 246 |
+
print(f"Error: Could not convert question count '{question_count}' to integer.")
|
| 247 |
+
return pd.DataFrame()
|
| 248 |
+
|
| 249 |
+
# Process questions in batches
|
| 250 |
+
questions = []
|
| 251 |
+
batch_size = 50
|
| 252 |
+
for start in range(1, question_count + 1, batch_size):
|
| 253 |
+
end = min(start + batch_size - 1, question_count)
|
| 254 |
+
print(f"Processing questions from {pdf_path} {start}-{end}...")
|
| 255 |
+
questions_subset = process_with_gemini(pdf_text, start, end)
|
| 256 |
+
questions.append(questions_subset)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# Combine all processed question batches
|
| 260 |
+
all_questions = []
|
| 261 |
+
for question_set in questions:
|
| 262 |
+
try:
|
| 263 |
+
question_list = json.loads(question_set)
|
| 264 |
+
all_questions.extend(question_list)
|
| 265 |
+
except json.JSONDecodeError:
|
| 266 |
+
print(f"Error: A question batch response is not valid JSON.")
|
| 267 |
+
continue
|
| 268 |
+
|
| 269 |
+
# If no valid questions were processed, return empty DataFrame
|
| 270 |
+
if not all_questions:
|
| 271 |
+
print("Error: No valid questions were processed.")
|
| 272 |
+
return pd.DataFrame()
|
| 273 |
+
|
| 274 |
+
# Process questions answers
|
| 275 |
+
questions_answer = process_answers_with_gemini(question_text)
|
| 276 |
+
try:
|
| 277 |
+
json_questions_answers = json.loads(questions_answer)
|
| 278 |
+
except json.JSONDecodeError:
|
| 279 |
+
print("Error: The response is not a valid JSON.")
|
| 280 |
+
|
| 281 |
+
# Format the data for the DataFrame
|
| 282 |
+
processed_data = []
|
| 283 |
+
for item in all_questions:
|
| 284 |
+
for key, value in item.items():
|
| 285 |
+
try:
|
| 286 |
+
real_answer = json_questions_answers[0].get(str(key), "Not available")
|
| 287 |
+
processed_data.append({
|
| 288 |
+
'id': key,
|
| 289 |
+
'statement': value['statement'],
|
| 290 |
+
'answers': value['answers'],
|
| 291 |
+
'real_answer': real_answer,
|
| 292 |
+
'theme': theme
|
| 293 |
+
})
|
| 294 |
+
except KeyError as e:
|
| 295 |
+
print(f"Error: Missing key in question data: {e}")
|
| 296 |
+
# Skip this question but continue with others
|
| 297 |
+
continue
|
| 298 |
+
|
| 299 |
+
# Create DataFrame from dictionary list
|
| 300 |
+
df = pd.DataFrame(processed_data)
|
| 301 |
+
if not df.empty:
|
| 302 |
+
df.set_index('id', inplace=True)
|
| 303 |
+
|
| 304 |
+
return df
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
all_df_array = []
|
| 308 |
+
# Verify that the folder exists
|
| 309 |
+
if os.path.exists(exams_folder):
|
| 310 |
+
for folder_name in os.listdir(exams_folder):
|
| 311 |
+
folder_path = os.path.join(exams_folder, folder_name)
|
| 312 |
+
|
| 313 |
+
# Verify that it's a folder
|
| 314 |
+
if os.path.isdir(folder_path):
|
| 315 |
+
print(f"Processing: {folder_name}")
|
| 316 |
+
|
| 317 |
+
files = os.listdir(folder_path)
|
| 318 |
+
|
| 319 |
+
# Initialize question and answer paths
|
| 320 |
+
questions_path = None
|
| 321 |
+
answers_path = None
|
| 322 |
+
|
| 323 |
+
# Look for files that start with the desired prefixes
|
| 324 |
+
for file in files:
|
| 325 |
+
if file.startswith('Exam_Booklet') and not questions_path:
|
| 326 |
+
questions_path = os.path.join(folder_path, file)
|
| 327 |
+
elif file.startswith('Answer_Sheet') and not answers_path:
|
| 328 |
+
answers_path = os.path.join(folder_path, file)
|
| 329 |
+
exam_df = process_pdf_file(questions_path, answers_path, folder_name)
|
| 330 |
+
if not exam_df.empty:
|
| 331 |
+
all_df_array.append(exam_df)
|
| 332 |
+
|
| 333 |
+
if all_df_array:
|
| 334 |
+
df = pd.concat(all_df_array, ignore_index=True) # `ignore_index=True` to avoid duplicates in the index
|
| 335 |
+
print(f"Final DataFrame with all questions and answers:\n{df}")
|
| 336 |
+
else:
|
| 337 |
+
print("No valid DataFrames were generated.")
|
| 338 |
+
|
| 339 |
+
"""# Upload to huggingface"""
|
| 340 |
+
|
| 341 |
+
login(HF_TOKEN)
|
| 342 |
+
Dataset.from_pandas(df).push_to_hub(HF_DATASET_NAME)
|