Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +0 -23
- LICENSE +674 -0
- README.md +13 -0
- config/.DS_Store +0 -0
- config/__pycache__/task.cpython-310.pyc +0 -0
- config/task.py +119 -0
- extras/datasets_eval_testing.py +42 -0
- extras/examples/1727.mid +0 -0
- extras/examples/805_S00_8s83.mid +0 -0
- extras/examples/drum.mid +0 -0
- extras/examples/drum_converted.mid +0 -0
- extras/examples/piano.mid +0 -0
- extras/install_deepspeed.md +28 -0
- extras/multi_channel_seqlen_stats.py +177 -0
- extras/remove_silence_musicnet_midi.py +32 -0
- infer.py +232 -0
- install_dataset.py +285 -0
- logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/.DS_Store +0 -0
- logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/checkpoints/.DS_Store +0 -0
- logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/result_mc13_full_plus_256_default_all_eval_final.json +444 -0
- logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/result_mc13_full_plus_256_default_mir_st500_voc_debug.json +18 -0
- logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/result_mc13_full_plus_256_default_rwc_pop_bass.json +20 -0
- logs/2024/notask_all_cross_v6_xk2_amp0811_gm_ext_plus_nops_b72/result_mt3_full_plus_default_all_eval_final.json +654 -0
- model/RoPE/RoPE.py +306 -0
- model/RoPE/__pycache__/RoPE.cpython-310.pyc +0 -0
- model/__pycache__/conformer_helper.cpython-310.pyc +0 -0
- model/__pycache__/perceiver_helper.cpython-310.pyc +0 -0
- model/__pycache__/perceiver_mod.cpython-310.pyc +0 -0
- model/__pycache__/pitchshift_layer.cpython-310.pyc +0 -0
- model/__pycache__/positional_encoding.cpython-310.pyc +0 -0
- model/__pycache__/t5mod.cpython-310.pyc +0 -0
- model/__pycache__/t5mod_helper.cpython-310.pyc +0 -0
- model/conv_block.py +217 -0
- model/lr_scheduler.py +91 -0
- model/optimizers.py +218 -0
- model/pitchshift_layer.py +550 -0
- model/positional_encoding.py +288 -0
- model/spectrogram.py +225 -0
- model/t5mod.py +687 -0
- model/t5mod_helper.py +133 -0
- pytest.ini +2 -0
- requirements.txt +16 -0
- test.py +183 -0
- tests/.DS_Store +0 -0
- tests/assert_fns.py +55 -0
- tests/audio_test.py +144 -0
- tests/event2note_test.py +187 -0
- tests/event_codec_test.py +158 -0
- tests/metrics_test.py +118 -0
- tests/midi_test.py +65 -0
.gitattributes
CHANGED
@@ -8,7 +8,6 @@
|
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
13 |
*.model filter=lfs diff=lfs merge=lfs -text
|
14 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
@@ -34,25 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
-
# Audio files - uncompressed
|
38 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
39 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
41 |
-
# Audio files - compressed
|
42 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
43 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
44 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
-
# Image files - uncompressed
|
48 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
49 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
50 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
51 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
52 |
-
# Image files - compressed
|
53 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
-
# Video files - compressed
|
57 |
-
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
-
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[](https://paperswithcode.com/sota/multi-instrument-music-transcription-on?p=yourmt3-multi-instrument-music-transcription) [](https://paperswithcode.com/sota/music-transcription-on-slakh2100?p=yourmt3-multi-instrument-music-transcription) [](https://paperswithcode.com/sota/drum-transcription-in-music-dtm-on-enst-drums?p=yourmt3-multi-instrument-music-transcription)
|
2 |
+
|
3 |
+

|
4 |
+
### YourMT3: Multi-task and multi-track music transcription for everyone
|
5 |
+
|
6 |
+
## NEWS
|
7 |
+
|
8 |
+
- **YourMT3+ (MLSP2024)**: [arxiv:2407.04822](https://arxiv.org/abs/2407.04822) | [Colab Demo](https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing) | [Code](https://github.com/mimbres/YourMT3/issues/2#issuecomment-2255643217)(pre-release)
|
9 |
+
- 2024.08 🤗HuggingFace [Spaces Demo](https://huggingface.co/spaces/mimbres/YourMT3) (Free GPU) is out!
|
10 |
+
- ⭐️ YouTube transcription is working again! (you'll need to authenticate your google account).
|
11 |
+
|
12 |
+

|
13 |
+
|
config/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
config/__pycache__/task.cpython-310.pyc
ADDED
Binary file (1.78 kB). View file
|
|
config/task.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""task.py"""
|
11 |
+
from config.vocabulary import *
|
12 |
+
from utils.note_event_dataclasses import Event
|
13 |
+
|
14 |
+
task_cfg = {
|
15 |
+
"mt3_midi": { # 11 classes + drum class
|
16 |
+
"name": "mt3_midi",
|
17 |
+
"train_program_vocab": program_vocab_presets["mt3_midi"],
|
18 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
19 |
+
},
|
20 |
+
"mt3_midi_plus": { # 11 classes + singing + drum class
|
21 |
+
"name": "mt3_midi_plus",
|
22 |
+
"train_program_vocab": program_vocab_presets["mt3_midi_plus"],
|
23 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
24 |
+
},
|
25 |
+
"mt3_full": { # 34 classes (except drums) as in MT3 paper
|
26 |
+
"name": "mt3_full",
|
27 |
+
"train_program_vocab": program_vocab_presets["mt3_full"],
|
28 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
29 |
+
},
|
30 |
+
"mt3_full_plus": { # 34 classes (except drums) as in MT3 paper + singing + drum class
|
31 |
+
"name": "mt3_full_plus",
|
32 |
+
"train_program_vocab": program_vocab_presets["mt3_full_plus"],
|
33 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
34 |
+
},
|
35 |
+
"gm_ext_plus": { # 13 classes + singing + chorus (except drums)
|
36 |
+
"name": "gm_ext_plus",
|
37 |
+
"train_program_vocab": program_vocab_presets["gm_ext_plus"],
|
38 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
39 |
+
},
|
40 |
+
"singing_v1": {
|
41 |
+
"name": "singing",
|
42 |
+
"train_program_vocab": program_vocab_presets["mt3_full_plus"],
|
43 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
44 |
+
"subtask_tokens": ["task", "transcribe_singing", "transcribe_all"],
|
45 |
+
"ignore_decoding_tokens": ["task", "transcribe_singing", "transcribe_all"],
|
46 |
+
"max_task_token_length": 2,
|
47 |
+
"eval_subtask_prefix": {
|
48 |
+
"default": [Event("transcribe_all", 0), Event("task", 0)],
|
49 |
+
"singing-only": [Event("transcribe_singing", 0),
|
50 |
+
Event("task", 0)],
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"singing_drum_v1": {
|
54 |
+
"name": "singing_drum",
|
55 |
+
"train_program_vocab": program_vocab_presets["mt3_full_plus"],
|
56 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
57 |
+
"subtask_tokens": ["task", "transcribe_singing", "transcribe_drum", "transcribe_all"],
|
58 |
+
"ignore_decoding_tokens": [
|
59 |
+
"task", "transcribe_singing", "transcribe_drum", "transcribe_all"
|
60 |
+
],
|
61 |
+
"max_task_token_length": 2,
|
62 |
+
"eval_subtask_prefix": {
|
63 |
+
"default": [Event("transcribe_all", 0), Event("task", 0)],
|
64 |
+
"singing-only": [Event("transcribe_singing", 0),
|
65 |
+
Event("task", 0)],
|
66 |
+
"drum-only": [Event("transcribe_drum", 0),
|
67 |
+
Event("task", 0)],
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"mc13": { # multi-channel decoding task of {11 classes + drums + singing}
|
71 |
+
"name": "mc13",
|
72 |
+
"train_program_vocab": program_vocab_presets["gm_plus"],
|
73 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
74 |
+
"num_decoding_channels": len(program_vocab_presets["gm_plus"]) + 1, # 13
|
75 |
+
"max_note_token_length_per_ch": 512, # multi-channel decoding exclusive parameter
|
76 |
+
"mask_loss_strategy": None, # multi-channel decoding exclusive parameter
|
77 |
+
},
|
78 |
+
"mc13_256": { # multi-channel decoding task of {11 classes + drums + singing}
|
79 |
+
"name": "mc13_256",
|
80 |
+
"train_program_vocab": program_vocab_presets["gm_plus"],
|
81 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
82 |
+
"num_decoding_channels": len(program_vocab_presets["gm_plus"]) + 1, # 13
|
83 |
+
"max_note_token_length_per_ch": 256, # multi-channel decoding exclusive parameter
|
84 |
+
"mask_loss_strategy": None, # multi-channel decoding exclusive parameter
|
85 |
+
},
|
86 |
+
"mc13_full_plus": { # multi-channel decoding task of {34 classes + drums + singing & chorus} mapped to 13 channels
|
87 |
+
"name": "mc13_full_plus",
|
88 |
+
"train_program_vocab": program_vocab_presets["mt3_full_plus"],
|
89 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
90 |
+
"program2channel_vocab_source": program_vocab_presets["gm_plus"],
|
91 |
+
"num_decoding_channels": 13,
|
92 |
+
"max_note_token_length_per_ch": 512, # multi-channel decoding exclusive parameter
|
93 |
+
"mask_loss_strategy": None, # multi-channel decoding exclusive parameter
|
94 |
+
},
|
95 |
+
"mc13_full_plus_256": { # multi-channel decoding task of {34 classes + drums + singing & chorus} mapped to 13 channels
|
96 |
+
"name": "mc13_full_plus_256",
|
97 |
+
"train_program_vocab": program_vocab_presets["mt3_full_plus"],
|
98 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
99 |
+
"program2channel_vocab_source": program_vocab_presets["gm_plus"],
|
100 |
+
"num_decoding_channels": 13,
|
101 |
+
"max_note_token_length_per_ch": 256, # multi-channel decoding exclusive parameter
|
102 |
+
"mask_loss_strategy": None, # multi-channel decoding exclusive parameter
|
103 |
+
},
|
104 |
+
"exc_v1": {
|
105 |
+
"name": "exclusive",
|
106 |
+
"train_program_vocab": program_vocab_presets["mt3_full_plus"],
|
107 |
+
"train_drum_vocab": drum_vocab_presets["gm"],
|
108 |
+
"subtask_tokens": ["transcribe", "all", ":"],
|
109 |
+
# "ignore_decoding_tokens": [
|
110 |
+
# "task", "transcribe_singing", "transcribe_drum", "transcribe_all"
|
111 |
+
# ],
|
112 |
+
# "max_task_token_length": 2,
|
113 |
+
"ignore_decoding_tokens_from_and_to": ["transcribe", ":"],
|
114 |
+
"eval_subtask_prefix": { # this is the main task that transcribe all instruments
|
115 |
+
"default": [Event("transcribe", 0), Event("all", 0), Event(":", 0)],
|
116 |
+
},
|
117 |
+
"shuffle_subtasks": True,
|
118 |
+
},
|
119 |
+
}
|
extras/datasets_eval_testing.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils.datasets_eval import AudioFileDataset
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
|
5 |
+
|
6 |
+
def test():
|
7 |
+
|
8 |
+
ds = AudioFileDataset()
|
9 |
+
dl = DataLoader(
|
10 |
+
ds, batch_size=None, collate_fn=lambda k: k
|
11 |
+
) # empty collate_fn is required to use mixed types.
|
12 |
+
|
13 |
+
for x, y in dl:
|
14 |
+
break
|
15 |
+
|
16 |
+
class MyModel(pl.LightningModule):
|
17 |
+
|
18 |
+
def __init__(self, **kwargs):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
return x
|
23 |
+
|
24 |
+
def training_step(self, batch, batch_idx):
|
25 |
+
return 0
|
26 |
+
|
27 |
+
def validation_step(self, batch, batch_idx):
|
28 |
+
print(batch)
|
29 |
+
return 0
|
30 |
+
|
31 |
+
def train_dataloader(self):
|
32 |
+
return dl
|
33 |
+
|
34 |
+
def val_dataloader(self):
|
35 |
+
return dl
|
36 |
+
|
37 |
+
def configure_optimizers(self):
|
38 |
+
return None
|
39 |
+
|
40 |
+
model = MyModel()
|
41 |
+
trainer = pl.Trainer()
|
42 |
+
trainer.validate(model)
|
extras/examples/1727.mid
ADDED
Binary file (49.2 kB). View file
|
|
extras/examples/805_S00_8s83.mid
ADDED
Binary file (2.15 kB). View file
|
|
extras/examples/drum.mid
ADDED
Binary file (10.1 kB). View file
|
|
extras/examples/drum_converted.mid
ADDED
Binary file (12.8 kB). View file
|
|
extras/examples/piano.mid
ADDED
Binary file (54 kB). View file
|
|
extras/install_deepspeed.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
# not required on pytorch 2.0:latest container
|
4 |
+
pip install cupy-cuda11x -f https://pip.cupy.dev/aarch64
|
5 |
+
|
6 |
+
apt-get update
|
7 |
+
apt-get install git
|
8 |
+
apt-get install libaio-dev
|
9 |
+
|
10 |
+
DS_BUILD_OPS=1 pip install deepspeed
|
11 |
+
ds_report
|
12 |
+
|
13 |
+
|
14 |
+
pip install deepspeed==0.7.7
|
15 |
+
|
16 |
+
git clone https://github.com/NVIDIA/apex
|
17 |
+
cd apex
|
18 |
+
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
|
19 |
+
|
20 |
+
In case you have trouble building apex from source we recommend using the NGC containers
|
21 |
+
from here which come with a pre-built PyTorch and apex release.
|
22 |
+
|
23 |
+
nvcr.io/nvidia/pytorch:23.01-py3
|
24 |
+
|
25 |
+
pip install deepspeed, pip install transformers[deepspeed]
|
26 |
+
https://www.deepspeed.ai/docs/config-json/#autotuning
|
27 |
+
|
28 |
+
"""
|
extras/multi_channel_seqlen_stats.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
from typing import Dict, Tuple
|
11 |
+
from copy import deepcopy
|
12 |
+
from collections import Counter
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from utils.data_modules import AMTDataModule
|
16 |
+
from utils.task_manager import TaskManager
|
17 |
+
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg
|
18 |
+
from utils.augment import intra_stem_augment_processor
|
19 |
+
|
20 |
+
|
21 |
+
def get_ds(data_preset_multi: Dict, task_name: str, train_num_samples_per_epoch: int = 90000):
|
22 |
+
tm = TaskManager(task_name=task_name)
|
23 |
+
tm.max_note_token_length_per_ch = 1024 # only to check the max length
|
24 |
+
dm = AMTDataModule(data_preset_multi=data_preset_multi,
|
25 |
+
task_manager=tm,
|
26 |
+
train_num_samples_per_epoch=train_num_samples_per_epoch)
|
27 |
+
dm.setup('fit')
|
28 |
+
dl = dm.train_dataloader()
|
29 |
+
ds = dl.flattened[0].dataset
|
30 |
+
return ds
|
31 |
+
|
32 |
+
|
33 |
+
data_preset_multi = data_preset_multi_cfg["all_cross_v6"]
|
34 |
+
task_name = "mc13" # "mt3_full_plus"
|
35 |
+
ds = get_ds(data_preset_multi, task_name=task_name)
|
36 |
+
ds.random_amp_range = [0.8, 1.1]
|
37 |
+
ds.stem_xaug_policy = {
|
38 |
+
"max_k": 5,
|
39 |
+
"tau": 0.3,
|
40 |
+
"alpha": 1.0,
|
41 |
+
"max_subunit_stems": 12,
|
42 |
+
"no_instr_overlap": True,
|
43 |
+
"no_drum_overlap": True,
|
44 |
+
"uhat_intra_stem_augment": True,
|
45 |
+
}
|
46 |
+
|
47 |
+
length_all = []
|
48 |
+
for i in range(40000):
|
49 |
+
if i % 5000 == 0:
|
50 |
+
print(i)
|
51 |
+
audio_arr, note_token_arr, task_totken_arr, pshift_steps = ds.__getitem__(i)
|
52 |
+
lengths = torch.sum(note_token_arr != 0, dim=2).flatten().cpu().tolist()
|
53 |
+
length_all.extend(lengths)
|
54 |
+
|
55 |
+
length_all = np.asarray(length_all)
|
56 |
+
|
57 |
+
# stats
|
58 |
+
empty_sequence = np.sum(length_all < 3) / len(length_all) * 100
|
59 |
+
print("empty_sequences:", f"{empty_sequence:.2f}", "%")
|
60 |
+
|
61 |
+
mean_except_empty = np.mean(length_all[length_all > 2])
|
62 |
+
print("mean_except_empty:", mean_except_empty)
|
63 |
+
|
64 |
+
median_except_empty = np.median(length_all[length_all > 2])
|
65 |
+
print("median_except_empty:", median_except_empty)
|
66 |
+
|
67 |
+
ch_less_than_768 = np.sum(length_all < 768) / len(length_all) * 100
|
68 |
+
print("ch_less_than_768:", f"{ch_less_than_768:.2f}", "%")
|
69 |
+
|
70 |
+
ch_larger_than_512 = np.sum(length_all > 512) / len(length_all) * 100
|
71 |
+
print("ch_larger_than_512:", f"{ch_larger_than_512:.6f}", "%")
|
72 |
+
|
73 |
+
ch_larger_than_256 = np.sum(length_all > 256) / len(length_all) * 100
|
74 |
+
print("ch_larger_than_256:", f"{ch_larger_than_256:.6f}", "%")
|
75 |
+
|
76 |
+
ch_larger_than_128 = np.sum(length_all > 128) / len(length_all) * 100
|
77 |
+
print("ch_larger_than_128:", f"{ch_larger_than_128:.6f}", "%")
|
78 |
+
|
79 |
+
ch_larger_than_64 = np.sum(length_all > 64) / len(length_all) * 100
|
80 |
+
print("ch_larger_than_64:", f"{ch_larger_than_64:.6f}", "%")
|
81 |
+
|
82 |
+
song_length_all = length_all.reshape(-1, 13)
|
83 |
+
song_larger_than_512 = 0
|
84 |
+
song_larger_than_256 = 0
|
85 |
+
song_larger_than_128 = 0
|
86 |
+
song_larger_than_64 = 0
|
87 |
+
for l in song_length_all:
|
88 |
+
if np.sum(l > 512) > 0:
|
89 |
+
song_larger_than_512 += 1
|
90 |
+
if np.sum(l > 256) > 0:
|
91 |
+
song_larger_than_256 += 1
|
92 |
+
if np.sum(l > 128) > 0:
|
93 |
+
song_larger_than_128 += 1
|
94 |
+
if np.sum(l > 64) > 0:
|
95 |
+
song_larger_than_64 += 1
|
96 |
+
num_songs = len(song_length_all)
|
97 |
+
print("song_larger_than_512:", f"{song_larger_than_512/num_songs*100:.4f}", "%")
|
98 |
+
print("song_larger_than_256:", f"{song_larger_than_256/num_songs*100:.4f}", "%")
|
99 |
+
print("song_larger_than_128:", f"{song_larger_than_128/num_songs*100:.4f}", "%")
|
100 |
+
print("song_larger_than_64:", f"{song_larger_than_64/num_songs*100:.4f}", "%")
|
101 |
+
|
102 |
+
instr_dict = {
|
103 |
+
0: "Piano",
|
104 |
+
1: "Chromatic Percussion",
|
105 |
+
2: "Organ",
|
106 |
+
3: "Guitar",
|
107 |
+
4: "Bass",
|
108 |
+
5: "Strings + Ensemble",
|
109 |
+
6: "Brass",
|
110 |
+
7: "Reed",
|
111 |
+
8: "Pipe",
|
112 |
+
9: "Synth Lead",
|
113 |
+
10: "Synth Pad",
|
114 |
+
11: "Singing",
|
115 |
+
12: "Drums",
|
116 |
+
}
|
117 |
+
cnt_larger_than_512 = Counter()
|
118 |
+
for i in np.where(length_all > 512)[0] % 13:
|
119 |
+
cnt_larger_than_512[i] += 1
|
120 |
+
print("larger_than_512:")
|
121 |
+
for k, v in cnt_larger_than_512.items():
|
122 |
+
print(f" - {instr_dict[k]}: {v}")
|
123 |
+
|
124 |
+
cnt_larger_than_256 = Counter()
|
125 |
+
for i in np.where(length_all > 256)[0] % 13:
|
126 |
+
cnt_larger_than_256[i] += 1
|
127 |
+
print("larger_than_256:")
|
128 |
+
for k, v in cnt_larger_than_256.items():
|
129 |
+
print(f" - {instr_dict[k]}: {v}")
|
130 |
+
|
131 |
+
cnt_larger_than_128 = Counter()
|
132 |
+
for i in np.where(length_all > 128)[0] % 13:
|
133 |
+
cnt_larger_than_128[i] += 1
|
134 |
+
print("larger_than_128:")
|
135 |
+
for k, v in cnt_larger_than_128.items():
|
136 |
+
print(f" - {instr_dict[k]}: {v}")
|
137 |
+
"""
|
138 |
+
empty_sequences: 91.06 %
|
139 |
+
mean_except_empty: 36.68976799156269
|
140 |
+
median_except_empty: 31.0
|
141 |
+
ch_less_than_768: 100.00 %
|
142 |
+
ch_larger_than_512: 0.000158 %
|
143 |
+
ch_larger_than_256: 0.015132 %
|
144 |
+
ch_larger_than_128: 0.192061 %
|
145 |
+
ch_larger_than_64: 0.661260 %
|
146 |
+
song_larger_than_512: 0.0021 %
|
147 |
+
song_larger_than_256: 0.1926 %
|
148 |
+
song_larger_than_128: 2.2280 %
|
149 |
+
song_larger_than_64: 6.1033 %
|
150 |
+
|
151 |
+
larger_than_512:
|
152 |
+
- Guitar: 7
|
153 |
+
- Strings + Ensemble: 3
|
154 |
+
larger_than_256:
|
155 |
+
- Piano: 177
|
156 |
+
- Guitar: 680
|
157 |
+
- Strings + Ensemble: 79
|
158 |
+
- Organ: 2
|
159 |
+
- Chromatic Percussion: 11
|
160 |
+
- Bass: 1
|
161 |
+
- Synth Lead: 2
|
162 |
+
- Brass: 1
|
163 |
+
- Reed: 5
|
164 |
+
larger_than_128:
|
165 |
+
- Guitar: 4711
|
166 |
+
- Strings + Ensemble: 1280
|
167 |
+
- Piano: 5548
|
168 |
+
- Bass: 211
|
169 |
+
- Synth Pad: 22
|
170 |
+
- Pipe: 18
|
171 |
+
- Chromatic Percussion: 55
|
172 |
+
- Synth Lead: 22
|
173 |
+
- Organ: 75
|
174 |
+
- Reed: 161
|
175 |
+
- Brass: 45
|
176 |
+
- Drums: 11
|
177 |
+
"""
|
extras/remove_silence_musicnet_midi.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
|
4 |
+
from utils.midi import midi2note
|
5 |
+
from utils.note2event import note2note_event
|
6 |
+
from utils.note_event_dataclasses import Note
|
7 |
+
from utils.note_event_dataclasses import NoteEvent
|
8 |
+
from utils.midi import note_event2midi
|
9 |
+
|
10 |
+
data_home = '../../data'
|
11 |
+
dataset_name = 'musicnet'
|
12 |
+
base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
|
13 |
+
mid_pattern = os.path.join(base_dir, '*_midi', '*.mid')
|
14 |
+
mid_files = glob.glob(mid_pattern, recursive=True)
|
15 |
+
|
16 |
+
for mid_file in mid_files:
|
17 |
+
notes, _ = midi2note(mid_file)
|
18 |
+
first_onset_time = notes[0].onset
|
19 |
+
fixed_notes = []
|
20 |
+
for note in notes:
|
21 |
+
fixed_notes.append(
|
22 |
+
Note(
|
23 |
+
is_drum=note.is_drum,
|
24 |
+
program=note.program,
|
25 |
+
onset=note.onset - first_onset_time,
|
26 |
+
offset=note.offset - first_onset_time,
|
27 |
+
pitch=note.pitch,
|
28 |
+
velocity=note.velocity))
|
29 |
+
assert len(notes) == len(fixed_notes)
|
30 |
+
fixed_note_events = note2note_event(fixed_notes, return_activity=False)
|
31 |
+
note_event2midi(fixed_note_events, mid_file)
|
32 |
+
print(f'Overwriting {mid_file}')
|
infer.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @title Model helper
|
2 |
+
import os
|
3 |
+
from collections import Counter
|
4 |
+
import argparse
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from typing import Literal, Dict
|
8 |
+
import torchaudio
|
9 |
+
|
10 |
+
from model.init_train import initialize_trainer, update_config
|
11 |
+
from utils.task_manager import TaskManager
|
12 |
+
from config.vocabulary import drum_vocab_presets
|
13 |
+
from utils.utils import str2bool
|
14 |
+
from utils.utils import Timer
|
15 |
+
from utils.audio import slice_padded_array
|
16 |
+
from utils.note2event import mix_notes
|
17 |
+
from utils.event2note import merge_zipped_note_events_and_ties_to_notes
|
18 |
+
from utils.utils import write_model_output_as_midi, write_err_cnt_as_json
|
19 |
+
from model.ymt3 import YourMT3
|
20 |
+
|
21 |
+
def load_model_checkpoint(args=None):
|
22 |
+
parser = argparse.ArgumentParser(description="YourMT3")
|
23 |
+
# General
|
24 |
+
parser.add_argument('exp_id', type=str, help='A unique identifier for the experiment is used to resume training. The "@" symbol can be used to load a specific checkpoint.')
|
25 |
+
parser.add_argument('-p', '--project', type=str, default='ymt3', help='project name')
|
26 |
+
parser.add_argument('-ac', '--audio-codec', type=str, default=None, help='audio codec (default=None). {"spec", "melspec"}. If None, default value defined in config.py will be used.')
|
27 |
+
parser.add_argument('-hop', '--hop-length', type=int, default=None, help='hop length in frames (default=None). {128, 300} 128 for MT3, 300 for PerceiverTFIf None, default value defined in config.py will be used.')
|
28 |
+
parser.add_argument('-nmel', '--n-mels', type=int, default=None, help='number of mel bins (default=None). If None, default value defined in config.py will be used.')
|
29 |
+
parser.add_argument('-if', '--input-frames', type=int, default=None, help='number of audio frames for input segment (default=None). If None, default value defined in config.py will be used.')
|
30 |
+
# Model configurations
|
31 |
+
parser.add_argument('-sqr', '--sca-use-query-residual', type=str2bool, default=None, help='sca use query residual flag. Default follows config.py')
|
32 |
+
parser.add_argument('-enc', '--encoder-type', type=str, default=None, help="Encoder type. 't5' or 'perceiver-tf' or 'conformer'. Default is 't5', following config.py.")
|
33 |
+
parser.add_argument('-dec', '--decoder-type', type=str, default=None, help="Decoder type. 't5' or 'multi-t5'. Default is 't5', following config.py.")
|
34 |
+
parser.add_argument('-preenc', '--pre-encoder-type', type=str, default='default', help="Pre-encoder type. None or 'conv' or 'default'. By default, t5_enc:None, perceiver_tf_enc:conv, conformer:None")
|
35 |
+
parser.add_argument('-predec', '--pre-decoder-type', type=str, default='default', help="Pre-decoder type. {None, 'linear', 'conv1', 'mlp', 'group_linear'} or 'default'. Default is {'t5': None, 'perceiver-tf': 'linear', 'conformer': None}.")
|
36 |
+
parser.add_argument('-cout', '--conv-out-channels', type=int, default=None, help='Number of filters for pre-encoder conv layer. Default follows "model_cfg" of config.py.')
|
37 |
+
parser.add_argument('-tenc', '--task-cond-encoder', type=str2bool, default=True, help='task conditional encoder (default=True). True or False')
|
38 |
+
parser.add_argument('-tdec', '--task-cond-decoder', type=str2bool, default=True, help='task conditional decoder (default=True). True or False')
|
39 |
+
parser.add_argument('-df', '--d-feat', type=int, default=None, help='Audio feature will be projected to this dimension for Q,K,V of T5 or K,V of Perceiver (default=None). If None, default value defined in config.py will be used.')
|
40 |
+
parser.add_argument('-pt', '--pretrained', type=str2bool, default=False, help='pretrained T5(default=False). True or False')
|
41 |
+
parser.add_argument('-b', '--base-name', type=str, default="google/t5-v1_1-small", help='base model name (default="google/t5-v1_1-small")')
|
42 |
+
parser.add_argument('-epe', '--encoder-position-encoding-type', type=str, default='default', help="Positional encoding type of encoder. By default, pre-defined PE for T5 or Perceiver-TF encoder in config.py. For T5: {'sinusoidal', 'trainable'}, conformer: {'rotary', 'trainable'}, Perceiver-TF: {'trainable', 'rope', 'alibi', 'alibit', 'None', '0', 'none', 'tkd', 'td', 'tk', 'kdt'}.")
|
43 |
+
parser.add_argument('-dpe', '--decoder-position-encoding-type', type=str, default='default', help="Positional encoding type of decoder. By default, pre-defined PE for T5 in config.py. {'sinusoidal', 'trainable'}.")
|
44 |
+
parser.add_argument('-twe', '--tie-word-embedding', type=str2bool, default=None, help='tie word embedding (default=None). If None, default value defined in config.py will be used.')
|
45 |
+
parser.add_argument('-el', '--event-length', type=int, default=None, help='event length (default=None). If None, default value defined in model cfg of config.py will be used.')
|
46 |
+
# Perceiver-TF configurations
|
47 |
+
parser.add_argument('-dl', '--d-latent', type=int, default=None, help='Latent dimension of Perceiver. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
48 |
+
parser.add_argument('-nl', '--num-latents', type=int, default=None, help='Number of latents of Perceiver. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
49 |
+
parser.add_argument('-dpm', '--perceiver-tf-d-model', type=int, default=None, help='Perceiver-TF d_model (default=None). If None, default value defined in config.py will be used.')
|
50 |
+
parser.add_argument('-npb', '--num-perceiver-tf-blocks', type=int, default=None, help='Number of blocks of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py.')
|
51 |
+
parser.add_argument('-npl', '--num-perceiver-tf-local-transformers-per-block', type=int, default=None, help='Number of local layers per block of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
52 |
+
parser.add_argument('-npt', '--num-perceiver-tf-temporal-transformers-per-block', type=int, default=None, help='Number of temporal layers per block of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
53 |
+
parser.add_argument('-atc', '--attention-to-channel', type=str2bool, default=None, help='Attention to channel flag of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
54 |
+
parser.add_argument('-ln', '--layer-norm-type', type=str, default=None, help='Layer normalization type (default=None). {"layer_norm", "rms_norm"}. If None, default value defined in config.py will be used.')
|
55 |
+
parser.add_argument('-ff', '--ff-layer-type', type=str, default=None, help='Feed forward layer type (default=None). {"mlp", "moe", "gmlp"}. If None, default value defined in config.py will be used.')
|
56 |
+
parser.add_argument('-wf', '--ff-widening-factor', type=int, default=None, help='Feed forward layer widening factor for MLP/MoE/gMLP (default=None). If None, default value defined in config.py will be used.')
|
57 |
+
parser.add_argument('-nmoe', '--moe-num-experts', type=int, default=None, help='Number of experts for MoE (default=None). If None, default value defined in config.py will be used.')
|
58 |
+
parser.add_argument('-kmoe', '--moe-topk', type=int, default=None, help='Top-k for MoE (default=None). If None, default value defined in config.py will be used.')
|
59 |
+
parser.add_argument('-act', '--hidden-act', type=str, default=None, help='Hidden activation function (default=None). {"gelu", "silu", "relu", "tanh"}. If None, default value defined in config.py will be used.')
|
60 |
+
parser.add_argument('-rt', '--rotary-type', type=str, default=None, help='Rotary embedding type expressed in three letters. e.g. ppl: "pixel" for SCA and latents, "lang" for temporal transformer. If None, use config.')
|
61 |
+
parser.add_argument('-rk', '--rope-apply-to-keys', type=str2bool, default=None, help='Apply rope to keys (default=None). If None, use config.')
|
62 |
+
parser.add_argument('-rp', '--rope-partial-pe', type=str2bool, default=None, help='Whether to apply RoPE to partial positions (default=None). If None, use config.')
|
63 |
+
# Decoder configurations
|
64 |
+
parser.add_argument('-dff', '--decoder-ff-layer-type', type=str, default=None, help='Feed forward layer type of decoder (default=None). {"mlp", "moe", "gmlp"}. If None, default value defined in config.py will be used.')
|
65 |
+
parser.add_argument('-dwf', '--decoder-ff-widening-factor', type=int, default=None, help='Feed forward layer widening factor for decoder MLP/MoE/gMLP (default=None). If None, default value defined in config.py will be used.')
|
66 |
+
# Task and Evaluation configurations
|
67 |
+
parser.add_argument('-tk', '--task', type=str, default='mt3_full_plus', help='tokenizer type (default=mt3_full_plus). See config/task.py for more options.')
|
68 |
+
parser.add_argument('-epv', '--eval-program-vocab', type=str, default=None, help='evaluation vocabulary (default=None). If None, default vocabulary of the data preset will be used.')
|
69 |
+
parser.add_argument('-edv', '--eval-drum-vocab', type=str, default=None, help='evaluation vocabulary for drum (default=None). If None, default vocabulary of the data preset will be used.')
|
70 |
+
parser.add_argument('-etk', '--eval-subtask-key', type=str, default='default', help='evaluation subtask key (default=default). See config/task.py for more options.')
|
71 |
+
parser.add_argument('-t', '--onset-tolerance', type=float, default=0.05, help='onset tolerance (default=0.05).')
|
72 |
+
parser.add_argument('-os', '--test-octave-shift', type=str2bool, default=False, help='test optimal octave shift (default=False). True or False')
|
73 |
+
parser.add_argument('-w', '--write-model-output', type=str2bool, default=True, help='write model test output to file (default=False). True or False')
|
74 |
+
# Trainer configurations
|
75 |
+
parser.add_argument('-pr','--precision', type=str, default="bf16-mixed", help='precision (default="bf16-mixed") {32, 16, bf16, bf16-mixed}')
|
76 |
+
parser.add_argument('-st', '--strategy', type=str, default='auto', help='strategy (default=auto). auto or deepspeed or ddp')
|
77 |
+
parser.add_argument('-n', '--num-nodes', type=int, default=1, help='number of nodes (default=1)')
|
78 |
+
parser.add_argument('-g', '--num-gpus', type=str, default='auto', help='number of gpus (default="auto")')
|
79 |
+
parser.add_argument('-wb', '--wandb-mode', type=str, default="disabled", help='wandb mode for logging (default=None). "disabled" or "online" or "offline". If None, default value defined in config.py will be used.')
|
80 |
+
# Debug
|
81 |
+
parser.add_argument('-debug', '--debug-mode', type=str2bool, default=False, help='debug mode (default=False). True or False')
|
82 |
+
parser.add_argument('-tps', '--test-pitch-shift', type=int, default=None, help='use pitch shift when testing. debug-purpose only. (default=None). semitone in int.')
|
83 |
+
args = parser.parse_args(args)
|
84 |
+
# yapf: enable
|
85 |
+
if torch.__version__ >= "1.13":
|
86 |
+
torch.set_float32_matmul_precision("high")
|
87 |
+
args.epochs = None
|
88 |
+
|
89 |
+
# Initialize and update config
|
90 |
+
_, _, dir_info, shared_cfg = initialize_trainer(args, stage='test')
|
91 |
+
shared_cfg, audio_cfg, model_cfg = update_config(args, shared_cfg, stage='test')
|
92 |
+
|
93 |
+
if args.eval_drum_vocab != None: # override eval_drum_vocab
|
94 |
+
eval_drum_vocab = drum_vocab_presets[args.eval_drum_vocab]
|
95 |
+
|
96 |
+
# Initialize task manager
|
97 |
+
tm = TaskManager(task_name=args.task,
|
98 |
+
max_shift_steps=int(shared_cfg["TOKENIZER"]["max_shift_steps"]),
|
99 |
+
debug_mode=args.debug_mode)
|
100 |
+
print(f"Task: {tm.task_name}, Max Shift Steps: {tm.max_shift_steps}")
|
101 |
+
|
102 |
+
# Use GPU if available
|
103 |
+
device = "cpu" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
104 |
+
|
105 |
+
# Model
|
106 |
+
model = YourMT3(
|
107 |
+
audio_cfg=audio_cfg,
|
108 |
+
model_cfg=model_cfg,
|
109 |
+
shared_cfg=shared_cfg,
|
110 |
+
optimizer=None,
|
111 |
+
task_manager=tm, # tokenizer is a member of task_manager
|
112 |
+
eval_subtask_key=args.eval_subtask_key,
|
113 |
+
write_output_dir=dir_info["lightning_dir"] if args.write_model_output or args.test_octave_shift else None
|
114 |
+
).to(device)
|
115 |
+
checkpoint = torch.load(dir_info["last_ckpt_path"])
|
116 |
+
state_dict = checkpoint['state_dict']
|
117 |
+
new_state_dict = {k: v for k, v in state_dict.items() if 'pitchshift' not in k}
|
118 |
+
model.load_state_dict(new_state_dict, strict=False)
|
119 |
+
return model.eval()
|
120 |
+
|
121 |
+
|
122 |
+
def transcribe(model, audio_info):
|
123 |
+
t = Timer()
|
124 |
+
|
125 |
+
# Converting Audio
|
126 |
+
t.start()
|
127 |
+
audio, sr = torchaudio.load(uri=audio_info['filepath'])
|
128 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
129 |
+
audio = torchaudio.functional.resample(audio, sr, model.audio_cfg['sample_rate'])
|
130 |
+
audio_segments = slice_padded_array(audio, model.audio_cfg['input_frames'], model.audio_cfg['input_frames'])
|
131 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
132 |
+
audio_segments = torch.from_numpy(audio_segments.astype('float32')).to(device).unsqueeze(1) # (n_seg, 1, seg_sz)
|
133 |
+
t.stop(); t.print_elapsed_time("converting audio");
|
134 |
+
|
135 |
+
# Inference
|
136 |
+
t.start()
|
137 |
+
pred_token_arr, _ = model.inference_file(bsz=8, audio_segments=audio_segments)
|
138 |
+
t.stop(); t.print_elapsed_time("model inference");
|
139 |
+
|
140 |
+
# Post-processing
|
141 |
+
t.start()
|
142 |
+
num_channels = model.task_manager.num_decoding_channels
|
143 |
+
n_items = audio_segments.shape[0]
|
144 |
+
start_secs_file = [model.audio_cfg['input_frames'] * i / model.audio_cfg['sample_rate'] for i in range(n_items)]
|
145 |
+
pred_notes_in_file = []
|
146 |
+
n_err_cnt = Counter()
|
147 |
+
for ch in range(num_channels):
|
148 |
+
pred_token_arr_ch = [arr[:, ch, :] for arr in pred_token_arr] # (B, L)
|
149 |
+
zipped_note_events_and_tie, list_events, ne_err_cnt = model.task_manager.detokenize_list_batches(
|
150 |
+
pred_token_arr_ch, start_secs_file, return_events=True)
|
151 |
+
pred_notes_ch, n_err_cnt_ch = merge_zipped_note_events_and_ties_to_notes(zipped_note_events_and_tie)
|
152 |
+
pred_notes_in_file.append(pred_notes_ch)
|
153 |
+
n_err_cnt += n_err_cnt_ch
|
154 |
+
pred_notes = mix_notes(pred_notes_in_file) # This is the mixed notes from all channels
|
155 |
+
|
156 |
+
# Write MIDI
|
157 |
+
write_model_output_as_midi(pred_notes, 'content/',
|
158 |
+
audio_info['track_name'], model.midi_output_inverse_vocab)
|
159 |
+
t.stop(); t.print_elapsed_time("post processing");
|
160 |
+
midifile = os.path.join('content/model_output/', audio_info['track_name'] + '.mid')
|
161 |
+
assert os.path.exists(midifile)
|
162 |
+
return midifile
|
163 |
+
|
164 |
+
|
165 |
+
def prepare_media(source_path_or_url: os.PathLike,
|
166 |
+
source_type: Literal['audio_filepath', 'youtube_url'],
|
167 |
+
delete_video: bool = True) -> Dict:
|
168 |
+
"""prepare media from source path or youtube, and return audio info"""
|
169 |
+
# Get audio_file
|
170 |
+
if source_type == 'audio_filepath':
|
171 |
+
audio_file = source_path_or_url
|
172 |
+
else:
|
173 |
+
raise ValueError(source_type)
|
174 |
+
|
175 |
+
# Create info
|
176 |
+
info = torchaudio.info(audio_file)
|
177 |
+
return {
|
178 |
+
"filepath": audio_file,
|
179 |
+
"track_name": os.path.basename(audio_file).split('.')[0],
|
180 |
+
"sample_rate": int(info.sample_rate),
|
181 |
+
"bits_per_sample": int(info.bits_per_sample),
|
182 |
+
"num_channels": int(info.num_channels),
|
183 |
+
"num_frames": int(info.num_frames),
|
184 |
+
"duration": int(info.num_frames / info.sample_rate),
|
185 |
+
"encoding": str.lower(info.encoding),
|
186 |
+
}
|
187 |
+
|
188 |
+
def process_audio(audio_filepath, model):
|
189 |
+
if audio_filepath is None:
|
190 |
+
return None
|
191 |
+
audio_info = prepare_media(audio_filepath, source_type='audio_filepath')
|
192 |
+
midifile = transcribe(model, audio_info)
|
193 |
+
return midifile
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
# @title Load Checkpoint
|
197 |
+
model_name = 'YPTF+Single (noPS)' # @param ["YMT3+", "YPTF+Single (noPS)", "YPTF+Multi (PS)", "YPTF.MoE+Multi (noPS)", "YPTF.MoE+Multi (PS)"]
|
198 |
+
precision = '16' # @param ["32", "bf16-mixed", "16"]
|
199 |
+
project = '2024'
|
200 |
+
|
201 |
+
if model_name == "YMT3+":
|
202 |
+
checkpoint = "[email protected]"
|
203 |
+
args = [checkpoint, '-p', project, '-pr', precision]
|
204 |
+
elif model_name == "YPTF+Single (noPS)":
|
205 |
+
checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt"
|
206 |
+
args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec',
|
207 |
+
'-hop', '300', '-atc', '1', '-pr', precision]
|
208 |
+
elif model_name == "YPTF+Multi (PS)":
|
209 |
+
checkpoint = "mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k@model.ckpt"
|
210 |
+
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256',
|
211 |
+
'-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf',
|
212 |
+
'-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
|
213 |
+
elif model_name == "YPTF.MoE+Multi (noPS)":
|
214 |
+
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt"
|
215 |
+
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
|
216 |
+
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
|
217 |
+
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
|
218 |
+
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
|
219 |
+
elif model_name == "YPTF.MoE+Multi (PS)":
|
220 |
+
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt"
|
221 |
+
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
|
222 |
+
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
|
223 |
+
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
|
224 |
+
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
|
225 |
+
else:
|
226 |
+
raise ValueError(model_name)
|
227 |
+
|
228 |
+
model = load_model_checkpoint(args=args)
|
229 |
+
|
230 |
+
TEST_AUDIO_FILEPATH = "/home/richhiey/Desktop/code/test_data/test.mp3"
|
231 |
+
midifile = process_audio(TEST_AUDIO_FILEPATH, model)
|
232 |
+
print(midifile)
|
install_dataset.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
""" install_dataset.py """
|
11 |
+
import os
|
12 |
+
import argparse
|
13 |
+
import mirdata
|
14 |
+
from typing import Optional, Tuple, Union
|
15 |
+
from utils.preprocess.generate_dataset_stats import generate_dataset_stats_for_all_datasets, update_dataset_stats_for_new_dataset
|
16 |
+
from utils.mirdata_dev.datasets import slakh16k
|
17 |
+
from utils.preprocess.preprocess_slakh import preprocess_slakh16k, add_program_and_is_drum_info_to_file_list
|
18 |
+
from utils.preprocess.preprocess_musicnet import preprocess_musicnet16k
|
19 |
+
from utils.preprocess.preprocess_maps import preprocess_maps16k
|
20 |
+
from utils.preprocess.preprocess_maestro import preprocess_maestro16k
|
21 |
+
from utils.preprocess.preprocess_guitarset import preprocess_guitarset16k, create_filelist_by_style_guitarset16k
|
22 |
+
from utils.preprocess.preprocess_enstdrums import preprocess_enstdrums16k, create_filelist_dtm_random_enstdrums16k
|
23 |
+
from utils.preprocess.preprocess_mir_st500 import preprocess_mir_st500_16k
|
24 |
+
from utils.preprocess.preprocess_cmedia import preprocess_cmedia_16k
|
25 |
+
from utils.preprocess.preprocess_rwc_pop_full import preprocess_rwc_pop_full16k
|
26 |
+
from utils.preprocess.preprocess_rwc_pop import preprocess_rwc_pop16k
|
27 |
+
from utils.preprocess.preprocess_egmd import preprocess_egmd16k
|
28 |
+
from utils.preprocess.preprocess_mir1k import preprocess_mir1k_16k
|
29 |
+
from utils.preprocess.preprocess_urmp import preprocess_urmp16k
|
30 |
+
from utils.preprocess.preprocess_idmt_smt_bass import preprocess_idmt_smt_bass_16k
|
31 |
+
from utils.preprocess.preprocess_geerdes import preprocess_geerdes16k
|
32 |
+
from utils.utils import download_and_extract #, download_and_extract_zenodo_restricted
|
33 |
+
|
34 |
+
# zenodo_token = "eyJhbGciOiJIUzUxMiIsImlhdCI6MTcxMDE1MDYzNywiZXhwIjoxNzEyNzA3MTk5fQ.eyJpZCI6ImRmODA5NzZlLTBjM2QtNDk5NS05YjM0LWFiNGM4NzJhMmZhMSIsImRhdGEiOnt9LCJyYW5kb20iOiIwMzY5ZDcxZjc2NTMyN2UyYmVmN2ExYjJkMmMyYTRhNSJ9.0aHnNC-7ivWQO6l8twjLR0NDH4boC0uOolAAmogVt7XRi2PHU5MEKBQoK7-wgDdnmWEIqEIvoLO6p8KTnsY9dg"
|
35 |
+
|
36 |
+
|
37 |
+
def install_slakh(data_home=os.PathLike, no_down=False) -> None:
|
38 |
+
if not no_down:
|
39 |
+
ds = slakh16k.Dataset(data_home, version='2100-yourmt3-16k')
|
40 |
+
ds.download(partial_download=['2100-yourmt3-16k', 'index'])
|
41 |
+
del (ds)
|
42 |
+
preprocess_slakh16k(data_home, delete_source_files=False, fix_bass_octave=True)
|
43 |
+
add_program_and_is_drum_info_to_file_list(data_home)
|
44 |
+
|
45 |
+
|
46 |
+
def install_musicnet(data_home=os.PathLike, no_down=False) -> None:
|
47 |
+
if not no_down:
|
48 |
+
url = "https://zenodo.org/record/7811639/files/musicnet_yourmt3_16k.tar.gz?download=1"
|
49 |
+
checksum = "a2da7c169e26d452a4e8b9bef498b3d7"
|
50 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
51 |
+
preprocess_musicnet16k(data_home, dataset_name='musicnet')
|
52 |
+
|
53 |
+
|
54 |
+
def install_maps(data_home=os.PathLike, no_down=False, sanity_check=False) -> None:
|
55 |
+
if not no_down:
|
56 |
+
url = "https://zenodo.org/record/7812075/files/maps_yourmt3_16k.tar.gz?download=1"
|
57 |
+
checksum = "6b070d162c931cd5e69c16ef2398a649"
|
58 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
59 |
+
preprocess_maps16k(data_home, dataset_name='maps', ignore_pedal=False, sanity_check=sanity_check)
|
60 |
+
|
61 |
+
|
62 |
+
def install_maestro(data_home=os.PathLike, no_down=False, sanity_check=False) -> None:
|
63 |
+
if not no_down:
|
64 |
+
url = "https://zenodo.org/record/7852176/files/maestro_yourmt3_16k.tar.gz?download=1"
|
65 |
+
checksum = "c17c6a188d936e5ff3870ef27144d397"
|
66 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
67 |
+
preprocess_maestro16k(data_home, dataset_name='maestro', ignore_pedal=False, sanity_check=sanity_check)
|
68 |
+
|
69 |
+
|
70 |
+
def install_guitarset(data_home=os.PathLike, no_down=False) -> None:
|
71 |
+
if not no_down:
|
72 |
+
url = "https://zenodo.org/record/7831843/files/guitarset_yourmt3_16k.tar.gz?download=1"
|
73 |
+
checksum = "e3cfe0cc9394d91d9c290ce888821360"
|
74 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
75 |
+
preprocess_guitarset16k(data_home, dataset_name='guitarset')
|
76 |
+
create_filelist_by_style_guitarset16k(data_home, dataset_name='guitarset')
|
77 |
+
|
78 |
+
|
79 |
+
def install_enstdrums(data_home, no_down=False) -> None:
|
80 |
+
if not no_down:
|
81 |
+
url = "https://zenodo.org/record/7831843/files/enstdrums_yourmt3_16k.tar.gz?download=1"
|
82 |
+
checksum = "7e28c2a923e4f4162b3d83877cedb5eb"
|
83 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
84 |
+
preprocess_enstdrums16k(data_home, dataset_name='enstdrums')
|
85 |
+
create_filelist_dtm_random_enstdrums16k(data_home, dataset_name='enstdrums')
|
86 |
+
|
87 |
+
|
88 |
+
def install_egmd(data_home, no_down=False) -> None:
|
89 |
+
if not no_down:
|
90 |
+
url = "https://zenodo.org/record/7831072/files/egmc_yourmt3_16k.tar.gz?download=1"
|
91 |
+
checksum = "4f615157ea4c52a64c6c9dcf68bf2bde"
|
92 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
93 |
+
preprocess_egmd16k(data_home, dataset_name='egmd')
|
94 |
+
|
95 |
+
|
96 |
+
def install_mirst500(data_home, zenodo_token, no_down=False, sanity_check=True, apply_correction=False) -> None:
|
97 |
+
""" Update Oct 2023: MIR-ST500 with FULL audio files"""
|
98 |
+
if not no_down:
|
99 |
+
url = "https://zenodo.org/records/10016397/files/mir_st500_yourmt3_16k.tar.gz?download=1"
|
100 |
+
checksum = "98eb52eb2456ce4034e21750f309da13"
|
101 |
+
download_and_extract(data_home, url, check_sum=checksum, zenodo_token=zenodo_token)
|
102 |
+
preprocess_mir_st500_16k(data_home, dataset_name='mir_st500', sanity_check=sanity_check)
|
103 |
+
|
104 |
+
|
105 |
+
def install_cmedia(data_home, zenodo_token, no_down=False, sanity_check=True) -> None:
|
106 |
+
if not no_down:
|
107 |
+
url = "https://zenodo.org/records/10016397/files/cmedia_yourmt3_16k.tar.gz?download=1"
|
108 |
+
checksum = "e6cca23577ba7588e9ed9711a398f7cf"
|
109 |
+
download_and_extract(data_home, url, check_sum=checksum, zenodo_token=zenodo_token)
|
110 |
+
preprocess_cmedia_16k(data_home, dataset_name='cmedia', sanity_check=sanity_check, apply_correction=True)
|
111 |
+
|
112 |
+
|
113 |
+
def install_rwc_pop(data_home, zenodo_token, no_down=False) -> None:
|
114 |
+
if not no_down:
|
115 |
+
url = "https://zenodo.org/records/10016397/files/rwc_pop_yourmt3_16k.tar.gz?download=1"
|
116 |
+
checksum = "ad459f9fa1b6b87676b2fb37c0ba5dfc"
|
117 |
+
download_and_extract(data_home, url, check_sum=checksum, zenodo_token=zenodo_token)
|
118 |
+
preprocess_rwc_pop16k(data_home, dataset_name='rwc_pop') # bass transcriptions
|
119 |
+
preprocess_rwc_pop_full16k(data_home, dataset_name='rwc_pop') # full transcriptions
|
120 |
+
|
121 |
+
|
122 |
+
def install_mir1k(data_home, no_down=False) -> None:
|
123 |
+
if not no_down:
|
124 |
+
url = "https://zenodo.org/record/7955481/files/mir1k_yourmt3_16k.tar.gz?download=1"
|
125 |
+
checksum = "4cbac56a4e971432ca807efd5cb76d67"
|
126 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
127 |
+
# preprocess_mir1k_16k(data_home, dataset_name='mir1k')
|
128 |
+
|
129 |
+
|
130 |
+
def install_urmp(data_home, no_down=False) -> None:
|
131 |
+
if not no_down:
|
132 |
+
url = "https://zenodo.org/record/8021437/files/urmp_yourmt3_16k.tar.gz?download=1"
|
133 |
+
checksum = "4f539c71678a77ba34f6dfca41072102"
|
134 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
135 |
+
preprocess_urmp16k(data_home, dataset_name='urmp')
|
136 |
+
|
137 |
+
|
138 |
+
def install_idmt_smt_bass(data_home, no_down=False) -> None:
|
139 |
+
if not no_down:
|
140 |
+
url = "https://zenodo.org/records/10009959/files/idmt_smt_bass_yourmt3_16k.tar.gz?download=1"
|
141 |
+
checksum = "0c95f91926a1e95b1f5d075c05b7eb76"
|
142 |
+
download_and_extract(data_home, url, remove_tar_file=True, check_sum=checksum)
|
143 |
+
preprocess_idmt_smt_bass_16k(data_home, dataset_name='idmt_smt_bass', sanity_check=True,
|
144 |
+
edit_audio=False) # the donwloaded audio has already been edited
|
145 |
+
|
146 |
+
|
147 |
+
def install_random_nsynth(data_home, no_down=False) -> None:
|
148 |
+
return
|
149 |
+
|
150 |
+
|
151 |
+
def install_geerdes(data_home) -> None:
|
152 |
+
try:
|
153 |
+
preprocess_geerdes16k(data_home, dataset_name='geerdes', sanity_check=False)
|
154 |
+
except Exception as e:
|
155 |
+
print(e)
|
156 |
+
print("Geerdes dataset is not available for download. Please contact the dataset provider.")
|
157 |
+
|
158 |
+
|
159 |
+
def regenerate_dataset_stats(data_home) -> None:
|
160 |
+
generate_dataset_stats_for_all_datasets(data_home)
|
161 |
+
|
162 |
+
|
163 |
+
def get_cached_zenodo_token() -> str:
|
164 |
+
# check if cached token exists
|
165 |
+
if not os.path.exists('.cached_zenodo_token'):
|
166 |
+
raise Exception("Cached Zenodo token not found. Please enter your Zenodo token.")
|
167 |
+
# read cached token
|
168 |
+
with open('.cached_zenodo_token', 'r') as f:
|
169 |
+
zenodo_token = f.read().strip()
|
170 |
+
print(f"Using cached Zenodo token: {zenodo_token}")
|
171 |
+
return zenodo_token
|
172 |
+
|
173 |
+
|
174 |
+
def cache_zenodo_token(zenodo_token: str) -> None:
|
175 |
+
with open('.cached_zenodo_token', 'w') as f:
|
176 |
+
f.write(zenodo_token)
|
177 |
+
print("Your Zenodo token is cached.")
|
178 |
+
|
179 |
+
|
180 |
+
def option_prompt(data_home: os.PathLike, no_download: bool = False) -> None:
|
181 |
+
print("Select the dataset(s) to install (enter comma-separated numbers):")
|
182 |
+
print("1. Slakh")
|
183 |
+
print("2. MusicNet")
|
184 |
+
print("3. MAPS")
|
185 |
+
print("4. Maestro")
|
186 |
+
print("5. GuitarSet")
|
187 |
+
print("6. ENST-drums")
|
188 |
+
print("7. EGMD")
|
189 |
+
print("8. MIR-ST500 ** Restricted Access **")
|
190 |
+
print("9. CMedia ** Restricted Access **")
|
191 |
+
print("10. RWC-Pop (Bass and Full) ** Restricted Access **")
|
192 |
+
print("11. MIR-1K (NOT SUPPORTED)")
|
193 |
+
print("12. URMP")
|
194 |
+
print("13. IDMT-SMT-Bass")
|
195 |
+
print("14. Random-NSynth")
|
196 |
+
print("15. Geerdes")
|
197 |
+
print("16. Regenerate Dataset Stats (experimental)")
|
198 |
+
print("17. Request Token for ** Restricted Access **")
|
199 |
+
print("18. Exit")
|
200 |
+
|
201 |
+
choice = input("Enter your choices (multiple choices with comma): ")
|
202 |
+
choices = [c.strip() for c in choice.split(',')]
|
203 |
+
|
204 |
+
if "18" in choices:
|
205 |
+
print("Exiting.")
|
206 |
+
else:
|
207 |
+
# ask for Zenodo token
|
208 |
+
for c in choices:
|
209 |
+
if int(c) in [8, 9, 10]:
|
210 |
+
if no_download is True:
|
211 |
+
zenodo_token = None
|
212 |
+
else:
|
213 |
+
zenodo_token = input("Enter Zenodo token, or press enter to use the cached token:")
|
214 |
+
if zenodo_token == "":
|
215 |
+
zenodo_token = get_cached_zenodo_token()
|
216 |
+
else:
|
217 |
+
cache_zenodo_token(zenodo_token)
|
218 |
+
break
|
219 |
+
|
220 |
+
if "1" in choices:
|
221 |
+
install_slakh(data_home, no_down=no_download)
|
222 |
+
if "2" in choices:
|
223 |
+
install_musicnet(data_home, no_down=no_download)
|
224 |
+
if "3" in choices:
|
225 |
+
install_maps(data_home, no_down=no_download)
|
226 |
+
if "4" in choices:
|
227 |
+
install_maestro(data_home, no_down=no_download)
|
228 |
+
if "5" in choices:
|
229 |
+
install_guitarset(data_home, no_down=no_download)
|
230 |
+
if "6" in choices:
|
231 |
+
install_enstdrums(data_home, no_down=no_download)
|
232 |
+
if "7" in choices:
|
233 |
+
install_egmd(data_home, no_down=no_download)
|
234 |
+
if "8" in choices:
|
235 |
+
install_mirst500(data_home, zenodo_token, no_down=no_download)
|
236 |
+
if "9" in choices:
|
237 |
+
install_cmedia(data_home, zenodo_token, no_down=no_download)
|
238 |
+
if "10" in choices:
|
239 |
+
install_rwc_pop(data_home, zenodo_token, no_down=no_download)
|
240 |
+
if "11" in choices:
|
241 |
+
install_mir1k(data_home, no_down=no_download)
|
242 |
+
if "12" in choices:
|
243 |
+
install_urmp(data_home, no_down=no_download)
|
244 |
+
if "13" in choices:
|
245 |
+
install_idmt_smt_bass(data_home, no_down=no_download)
|
246 |
+
if "14" in choices:
|
247 |
+
install_random_nsynth(data_home, no_down=no_download)
|
248 |
+
if "15" in choices:
|
249 |
+
install_geerdes(data_home) # not available for download
|
250 |
+
if "16" in choices:
|
251 |
+
regenerate_dataset_stats(data_home, no_down=no_download)
|
252 |
+
if "17" in choices:
|
253 |
+
print("\nPlease visit https://zenodo.org/records/10016397 to request a Zenodo token.")
|
254 |
+
print("Upon submitting your request, you will receive an email with a link labeled 'Access the record'.")
|
255 |
+
print("Copy the token that follows 'token=' in that link.")
|
256 |
+
if not any(int(c) in range(16) for c in choices):
|
257 |
+
print("Invalid choice(s). Please enter valid numbers separated by commas.")
|
258 |
+
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
|
262 |
+
parser = argparse.ArgumentParser(description='Dataset installer script.')
|
263 |
+
# data home dir
|
264 |
+
parser.add_argument(
|
265 |
+
'data_home',
|
266 |
+
type=str,
|
267 |
+
nargs='?',
|
268 |
+
default=None,
|
269 |
+
help='Path to data home directory. If None, use the default path defined in src/config/config.py')
|
270 |
+
# `no_download` option
|
271 |
+
parser.add_argument('--nodown',
|
272 |
+
'-nd',
|
273 |
+
action='store_true',
|
274 |
+
help='Flag to control downloading. If set, no downloading will occur.')
|
275 |
+
args = parser.parse_args()
|
276 |
+
|
277 |
+
if args.data_home is None:
|
278 |
+
from config.config import shared_cfg
|
279 |
+
data_home = shared_cfg["PATH"]["data_home"]
|
280 |
+
else:
|
281 |
+
data_home = args.data_home
|
282 |
+
os.makedirs(data_home, exist_ok=True)
|
283 |
+
no_download = args.nodown
|
284 |
+
|
285 |
+
option_prompt(data_home, no_download)
|
logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/checkpoints/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/result_mc13_full_plus_256_default_all_eval_final.json
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ '-----------------------------------------------------------------',
|
2 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
3 |
+
'Kick Drum': [36, 35],
|
4 |
+
'Snare Drum': [38, 40]},
|
5 |
+
'eval_vocab': [ { 'Bass': array([32, 33, 34, 35, 36, 37, 38, 39]),
|
6 |
+
'Brass': array([56, 57, 58, 59, 60, 61, 62, 63]),
|
7 |
+
'Chromatic Percussion': array([ 8, 9, 10, 11, 12, 13, 14, 15]),
|
8 |
+
'Guitar': array([24, 25, 26, 27, 28, 29, 30, 31]),
|
9 |
+
'Organ': array([16, 17, 18, 19, 20, 21, 22, 23]),
|
10 |
+
'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
11 |
+
'Pipe': array([72, 73, 74, 75, 76, 77, 78, 79]),
|
12 |
+
'Reed': array([64, 65, 66, 67, 68, 69, 70, 71]),
|
13 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]),
|
14 |
+
'Synth Lead': array([80, 81, 82, 83, 84, 85, 86, 87]),
|
15 |
+
'Synth Pad': array([88, 89, 90, 91, 92, 93, 94, 95])}],
|
16 |
+
'presets': ['slakh']},
|
17 |
+
[ { 'test/(slakh)frame_f': 0.8487486243247986,
|
18 |
+
'test/(slakh)frame_f_pc': 0.8603377938270569,
|
19 |
+
'test/(slakh)micro_offset_f_Bass': 0.869631290435791,
|
20 |
+
'test/(slakh)micro_offset_f_Brass': 0.6678106784820557,
|
21 |
+
'test/(slakh)micro_offset_f_Chromatic Percussion': 0.3883885443210602,
|
22 |
+
'test/(slakh)micro_offset_f_Guitar': 0.6883301734924316,
|
23 |
+
'test/(slakh)micro_offset_f_Organ': 0.6711145043373108,
|
24 |
+
'test/(slakh)micro_offset_f_Piano': 0.683600664138794,
|
25 |
+
'test/(slakh)micro_offset_f_Pipe': 0.6132691502571106,
|
26 |
+
'test/(slakh)micro_offset_f_Reed': 0.6974674463272095,
|
27 |
+
'test/(slakh)micro_offset_f_Strings': 0.5805016160011292,
|
28 |
+
'test/(slakh)micro_offset_f_Synth Lead': 0.7929936647415161,
|
29 |
+
'test/(slakh)micro_offset_f_Synth Pad': 0.2877211272716522,
|
30 |
+
'test/(slakh)micro_onset_f_Bass': 0.9328573346138,
|
31 |
+
'test/(slakh)micro_onset_f_Brass': 0.7279624342918396,
|
32 |
+
'test/(slakh)micro_onset_f_Chromatic Percussion': 0.7239300012588501,
|
33 |
+
'test/(slakh)micro_onset_f_Guitar': 0.8129678964614868,
|
34 |
+
'test/(slakh)micro_onset_f_Organ': 0.7785788178443909,
|
35 |
+
'test/(slakh)micro_onset_f_Piano': 0.8763775825500488,
|
36 |
+
'test/(slakh)micro_onset_f_Pipe': 0.7128946185112,
|
37 |
+
'test/(slakh)micro_onset_f_Reed': 0.8024615049362183,
|
38 |
+
'test/(slakh)micro_onset_f_Strings': 0.7257015109062195,
|
39 |
+
'test/(slakh)micro_onset_f_Synth Lead': 0.8566879034042358,
|
40 |
+
'test/(slakh)micro_onset_f_Synth Pad': 0.4453693926334381,
|
41 |
+
'test/(slakh)micro_onset_f_drum': 0.9112541079521179,
|
42 |
+
'test/(slakh)multi_f': 0.7397979497909546,
|
43 |
+
'test/(slakh)offset_f': 0.6961227655410767,
|
44 |
+
'test/(slakh)offset_f_Bass': 0.8508948087692261,
|
45 |
+
'test/(slakh)offset_f_Brass': 0.6707911491394043,
|
46 |
+
'test/(slakh)offset_f_Chromatic Percussion': 0.3454752266407013,
|
47 |
+
'test/(slakh)offset_f_Guitar': 0.6841201186180115,
|
48 |
+
'test/(slakh)offset_f_Organ': 0.6124169230461121,
|
49 |
+
'test/(slakh)offset_f_Piano': 0.6597973108291626,
|
50 |
+
'test/(slakh)offset_f_Pipe': 0.5729255676269531,
|
51 |
+
'test/(slakh)offset_f_Reed': 0.6875563263893127,
|
52 |
+
'test/(slakh)offset_f_Strings': 0.5812338590621948,
|
53 |
+
'test/(slakh)offset_f_Synth Lead': 0.7286868095397949,
|
54 |
+
'test/(slakh)offset_f_Synth Pad': 0.27617573738098145,
|
55 |
+
'test/(slakh)onset_f': 0.8419071435928345,
|
56 |
+
'test/(slakh)onset_f_Bass': 0.9303264617919922,
|
57 |
+
'test/(slakh)onset_f_Brass': 0.7301008701324463,
|
58 |
+
'test/(slakh)onset_f_Chromatic Percussion': 0.6354409456253052,
|
59 |
+
'test/(slakh)onset_f_Guitar': 0.8215969800949097,
|
60 |
+
'test/(slakh)onset_f_Organ': 0.740757942199707,
|
61 |
+
'test/(slakh)onset_f_Piano': 0.8769294619560242,
|
62 |
+
'test/(slakh)onset_f_Pipe': 0.6801912784576416,
|
63 |
+
'test/(slakh)onset_f_Reed': 0.7921974658966064,
|
64 |
+
'test/(slakh)onset_f_Strings': 0.7303540110588074,
|
65 |
+
'test/(slakh)onset_f_Synth Lead': 0.8201698064804077,
|
66 |
+
'test/(slakh)onset_f_Synth Pad': 0.4131230413913727,
|
67 |
+
'test/(slakh)onset_f_drum': 0.9040946960449219}],
|
68 |
+
'-----------------------------------------------------------------',
|
69 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
70 |
+
'Kick Drum': [36, 35],
|
71 |
+
'Snare Drum': [38, 40]},
|
72 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
73 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
74 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
75 |
+
'presets': ['musicnet_thickstun']},
|
76 |
+
[ { 'test/(musicnet)frame_f': 0.6431668400764465,
|
77 |
+
'test/(musicnet)frame_f_pc': 0.6712867617607117,
|
78 |
+
'test/(musicnet)micro_offset_f_Piano': 0.462179034948349,
|
79 |
+
'test/(musicnet)micro_offset_f_Strings': 0.2768903076648712,
|
80 |
+
'test/(musicnet)micro_offset_f_Winds': 0.29622459411621094,
|
81 |
+
'test/(musicnet)micro_onset_f_Piano': 0.8591256141662598,
|
82 |
+
'test/(musicnet)micro_onset_f_Strings': 0.43876463174819946,
|
83 |
+
'test/(musicnet)micro_onset_f_Winds': 0.5208131670951843,
|
84 |
+
'test/(musicnet)micro_onset_f_drum': nan,
|
85 |
+
'test/(musicnet)multi_f': 0.34509798884391785,
|
86 |
+
'test/(musicnet)offset_f': 0.3474598824977875,
|
87 |
+
'test/(musicnet)offset_f_Piano': 0.462179034948349,
|
88 |
+
'test/(musicnet)offset_f_Strings': 0.2768903076648712,
|
89 |
+
'test/(musicnet)offset_f_Winds': 0.29622459411621094,
|
90 |
+
'test/(musicnet)onset_f': 0.6119987964630127,
|
91 |
+
'test/(musicnet)onset_f_Piano': 0.8591256141662598,
|
92 |
+
'test/(musicnet)onset_f_Strings': 0.43876463174819946,
|
93 |
+
'test/(musicnet)onset_f_Winds': 0.5208131670951843,
|
94 |
+
'test/(musicnet)onset_f_drum': nan}],
|
95 |
+
'-----------------------------------------------------------------',
|
96 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
97 |
+
'Kick Drum': [36, 35],
|
98 |
+
'Snare Drum': [38, 40]},
|
99 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
100 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
101 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
102 |
+
'presets': ['musicnet_thickstun_em']},
|
103 |
+
[ { 'test/(musicnet)frame_f': 0.7289137840270996,
|
104 |
+
'test/(musicnet)frame_f_pc': 0.7467241287231445,
|
105 |
+
'test/(musicnet)micro_offset_f_Piano': 0.8453038334846497,
|
106 |
+
'test/(musicnet)micro_offset_f_Strings': 0.5030071139335632,
|
107 |
+
'test/(musicnet)micro_offset_f_Winds': 0.5958272814750671,
|
108 |
+
'test/(musicnet)micro_onset_f_Piano': 0.9820442199707031,
|
109 |
+
'test/(musicnet)micro_onset_f_Strings': 0.696555495262146,
|
110 |
+
'test/(musicnet)micro_onset_f_Winds': 0.7763221859931946,
|
111 |
+
'test/(musicnet)micro_onset_f_drum': nan,
|
112 |
+
'test/(musicnet)multi_f': 0.64804607629776,
|
113 |
+
'test/(musicnet)offset_f': 0.647705078125,
|
114 |
+
'test/(musicnet)offset_f_Piano': 0.8453038930892944,
|
115 |
+
'test/(musicnet)offset_f_Strings': 0.5030071139335632,
|
116 |
+
'test/(musicnet)offset_f_Winds': 0.5958272814750671,
|
117 |
+
'test/(musicnet)onset_f': 0.8195822834968567,
|
118 |
+
'test/(musicnet)onset_f_Piano': 0.9820442199707031,
|
119 |
+
'test/(musicnet)onset_f_Strings': 0.696555495262146,
|
120 |
+
'test/(musicnet)onset_f_Winds': 0.7763221859931946,
|
121 |
+
'test/(musicnet)onset_f_drum': nan}],
|
122 |
+
'-----------------------------------------------------------------',
|
123 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
124 |
+
'Kick Drum': [36, 35],
|
125 |
+
'Snare Drum': [38, 40]},
|
126 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
127 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
128 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
129 |
+
'presets': ['musicnet_thickstun_ext']},
|
130 |
+
[ { 'test/(musicnet)frame_f': 0.7118843793869019,
|
131 |
+
'test/(musicnet)frame_f_pc': 0.7285126447677612,
|
132 |
+
'test/(musicnet)micro_offset_f_Piano': 0.3649955093860626,
|
133 |
+
'test/(musicnet)micro_offset_f_Strings': 0.3690282702445984,
|
134 |
+
'test/(musicnet)micro_offset_f_Winds': 0.32839900255203247,
|
135 |
+
'test/(musicnet)micro_onset_f_Piano': 0.6793581247329712,
|
136 |
+
'test/(musicnet)micro_onset_f_Strings': 0.5712332129478455,
|
137 |
+
'test/(musicnet)micro_onset_f_Winds': 0.5383739471435547,
|
138 |
+
'test/(musicnet)micro_onset_f_drum': nan,
|
139 |
+
'test/(musicnet)multi_f': 0.39981773495674133,
|
140 |
+
'test/(musicnet)offset_f': 0.4001583456993103,
|
141 |
+
'test/(musicnet)offset_f_Piano': 0.38060951232910156,
|
142 |
+
'test/(musicnet)offset_f_Strings': 0.447208970785141,
|
143 |
+
'test/(musicnet)offset_f_Winds': 0.3266069293022156,
|
144 |
+
'test/(musicnet)onset_f': 0.6380151510238647,
|
145 |
+
'test/(musicnet)onset_f_Piano': 0.7089095115661621,
|
146 |
+
'test/(musicnet)onset_f_Strings': 0.6469746828079224,
|
147 |
+
'test/(musicnet)onset_f_Winds': 0.5373958349227905,
|
148 |
+
'test/(musicnet)onset_f_drum': nan}],
|
149 |
+
'-----------------------------------------------------------------',
|
150 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
151 |
+
'Kick Drum': [36, 35],
|
152 |
+
'Snare Drum': [38, 40]},
|
153 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
154 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
155 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
156 |
+
'presets': ['musicnet_thickstun_ext_em']},
|
157 |
+
[ { 'test/(musicnet)frame_f': 0.8102308511734009,
|
158 |
+
'test/(musicnet)frame_f_pc': 0.8194969296455383,
|
159 |
+
'test/(musicnet)micro_offset_f_Piano': 0.7447232007980347,
|
160 |
+
'test/(musicnet)micro_offset_f_Strings': 0.7160074710845947,
|
161 |
+
'test/(musicnet)micro_offset_f_Winds': 0.6263686418533325,
|
162 |
+
'test/(musicnet)micro_onset_f_Piano': 0.9545997381210327,
|
163 |
+
'test/(musicnet)micro_onset_f_Strings': 0.8443388342857361,
|
164 |
+
'test/(musicnet)micro_onset_f_Winds': 0.7937955856323242,
|
165 |
+
'test/(musicnet)micro_onset_f_drum': nan,
|
166 |
+
'test/(musicnet)multi_f': 0.741904616355896,
|
167 |
+
'test/(musicnet)offset_f': 0.7412658929824829,
|
168 |
+
'test/(musicnet)offset_f_Piano': 0.7575887441635132,
|
169 |
+
'test/(musicnet)offset_f_Strings': 0.7756823897361755,
|
170 |
+
'test/(musicnet)offset_f_Winds': 0.6246463060379028,
|
171 |
+
'test/(musicnet)onset_f': 0.8913213014602661,
|
172 |
+
'test/(musicnet)onset_f_Piano': 0.9567371606826782,
|
173 |
+
'test/(musicnet)onset_f_Strings': 0.8836190104484558,
|
174 |
+
'test/(musicnet)onset_f_Winds': 0.7928102612495422,
|
175 |
+
'test/(musicnet)onset_f_drum': nan}],
|
176 |
+
'-----------------------------------------------------------------',
|
177 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
178 |
+
'Kick Drum': [36, 35],
|
179 |
+
'Snare Drum': [38, 40]},
|
180 |
+
'eval_vocab': [{'Singing Voice': [100, 101]}],
|
181 |
+
'presets': ['mir_st500_voc']},
|
182 |
+
[ { 'test/(mir_st500)frame_f': 0.8046330809593201,
|
183 |
+
'test/(mir_st500)frame_f_pc': 0.8059064745903015,
|
184 |
+
'test/(mir_st500)melody_oa_Singing Voice': 0.7024147510528564,
|
185 |
+
'test/(mir_st500)melody_rca_Singing Voice': 0.7087444067001343,
|
186 |
+
'test/(mir_st500)melody_rpa_Singing Voice': 0.7024147510528564,
|
187 |
+
'test/(mir_st500)micro_offset_f_Singing Voice': 0.5492644309997559,
|
188 |
+
'test/(mir_st500)micro_onset_f_Singing Voice': 0.7167699337005615,
|
189 |
+
'test/(mir_st500)micro_onset_f_drum': nan,
|
190 |
+
'test/(mir_st500)multi_f': 0.5463830828666687,
|
191 |
+
'test/(mir_st500)offset_f': 0.5456082820892334,
|
192 |
+
'test/(mir_st500)offset_f_Singing Voice': 0.5464057922363281,
|
193 |
+
'test/(mir_st500)onset_f': 0.714525580406189,
|
194 |
+
'test/(mir_st500)onset_f_Singing Voice': 0.7155958414077759,
|
195 |
+
'test/(mir_st500)onset_f_drum': nan}],
|
196 |
+
'-----------------------------------------------------------------',
|
197 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
198 |
+
'Kick Drum': [36, 35],
|
199 |
+
'Snare Drum': [38, 40]},
|
200 |
+
'eval_vocab': [{'Singing Voice': [100, 101]}],
|
201 |
+
'presets': ['mir_st500']},
|
202 |
+
[ { 'test/(mir_st500)frame_f': 0.17174109816551208,
|
203 |
+
'test/(mir_st500)frame_f_pc': 0.17959092557430267,
|
204 |
+
'test/(mir_st500)melody_oa_Singing Voice': 0.6857293844223022,
|
205 |
+
'test/(mir_st500)melody_rca_Singing Voice': 0.6941294074058533,
|
206 |
+
'test/(mir_st500)melody_rpa_Singing Voice': 0.6857293844223022,
|
207 |
+
'test/(mir_st500)micro_offset_f_Singing Voice': 0.5249119997024536,
|
208 |
+
'test/(mir_st500)micro_onset_f_Singing Voice': 0.6945751905441284,
|
209 |
+
'test/(mir_st500)micro_onset_f_drum': nan,
|
210 |
+
'test/(mir_st500)multi_f': 0.394542932510376,
|
211 |
+
'test/(mir_st500)offset_f': 0.10482196509838104,
|
212 |
+
'test/(mir_st500)offset_f_Singing Voice': 0.5240825414657593,
|
213 |
+
'test/(mir_st500)onset_f': 0.14195600152015686,
|
214 |
+
'test/(mir_st500)onset_f_Singing Voice': 0.6942352056503296,
|
215 |
+
'test/(mir_st500)onset_f_drum': nan}],
|
216 |
+
'-----------------------------------------------------------------',
|
217 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
218 |
+
'Kick Drum': [36, 35],
|
219 |
+
'Snare Drum': [38, 40]},
|
220 |
+
'eval_vocab': [None],
|
221 |
+
'presets': ['enstdrums_dtp']},
|
222 |
+
[ { 'test/(enstdrums)frame_f': nan,
|
223 |
+
'test/(enstdrums)frame_f_pc': nan,
|
224 |
+
'test/(enstdrums)micro_onset_f_drum': 0.8911184072494507,
|
225 |
+
'test/(enstdrums)offset_f': nan,
|
226 |
+
'test/(enstdrums)onset_f': nan,
|
227 |
+
'test/(enstdrums)onset_f_drum': 0.895440399646759}],
|
228 |
+
'-----------------------------------------------------------------',
|
229 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
230 |
+
'Kick Drum': [36, 35],
|
231 |
+
'Snare Drum': [38, 40]},
|
232 |
+
'eval_vocab': [None],
|
233 |
+
'presets': ['enstdrums_dtm']},
|
234 |
+
[ { 'test/(enstdrums)frame_f': nan,
|
235 |
+
'test/(enstdrums)frame_f_pc': nan,
|
236 |
+
'test/(enstdrums)micro_onset_f_drum': 0.8614727258682251,
|
237 |
+
'test/(enstdrums)offset_f': nan,
|
238 |
+
'test/(enstdrums)onset_f': nan,
|
239 |
+
'test/(enstdrums)onset_f_drum': 0.866191565990448}],
|
240 |
+
'-----------------------------------------------------------------',
|
241 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
242 |
+
'Kick Drum': [36, 35],
|
243 |
+
'Snare Drum': [38, 40]},
|
244 |
+
'eval_vocab': [None],
|
245 |
+
'presets': ['guitarset_progression_pshift']},
|
246 |
+
[ { 'test/(guitarset)frame_f': 0.8917033672332764,
|
247 |
+
'test/(guitarset)frame_f_pc': 0.8943274617195129,
|
248 |
+
'test/(guitarset)micro_onset_f_drum': nan,
|
249 |
+
'test/(guitarset)offset_f': 0.8057622909545898,
|
250 |
+
'test/(guitarset)onset_f': 0.894720196723938,
|
251 |
+
'test/(guitarset)onset_f_drum': nan}],
|
252 |
+
'-----------------------------------------------------------------',
|
253 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
254 |
+
'Kick Drum': [36, 35],
|
255 |
+
'Snare Drum': [38, 40]},
|
256 |
+
'eval_vocab': [{'Bass': array([32, 33, 34, 35, 36, 37, 38, 39])}],
|
257 |
+
'presets': ['rwc_pop_bass']},
|
258 |
+
[ { 'test/(rwc_pop)frame_f': 0.11498401314020157,
|
259 |
+
'test/(rwc_pop)frame_f_pc': 0.22951407730579376,
|
260 |
+
'test/(rwc_pop)micro_offset_f_Bass': 0.23757217824459076,
|
261 |
+
'test/(rwc_pop)micro_onset_f_Bass': 0.3047849237918854,
|
262 |
+
'test/(rwc_pop)micro_onset_f_drum': nan,
|
263 |
+
'test/(rwc_pop)multi_f': 0.08871123939752579,
|
264 |
+
'test/(rwc_pop)offset_f': 0.07318931818008423,
|
265 |
+
'test/(rwc_pop)offset_f_Bass': 0.22453349828720093,
|
266 |
+
'test/(rwc_pop)onset_f': 0.10135377943515778,
|
267 |
+
'test/(rwc_pop)onset_f_Bass': 0.2894594371318817,
|
268 |
+
'test/(rwc_pop)onset_f_drum': nan}],
|
269 |
+
'-----------------------------------------------------------------',
|
270 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
271 |
+
'Kick Drum': [36, 35],
|
272 |
+
'Snare Drum': [38, 40]},
|
273 |
+
'eval_vocab': [{'Piano': array([0, 1, 2, 3, 4, 5, 6, 7])}],
|
274 |
+
'presets': ['maestro']},
|
275 |
+
[ { 'test/(maestro)frame_f': 0.8877186179161072,
|
276 |
+
'test/(maestro)frame_f_pc': 0.891477108001709,
|
277 |
+
'test/(maestro)micro_offset_f_Piano': 0.8288719058036804,
|
278 |
+
'test/(maestro)micro_onset_f_Piano': 0.953188419342041,
|
279 |
+
'test/(maestro)micro_onset_f_drum': nan,
|
280 |
+
'test/(maestro)multi_f': 0.8396718502044678,
|
281 |
+
'test/(maestro)offset_f': 0.8396490216255188,
|
282 |
+
'test/(maestro)offset_f_Piano': 0.8396718502044678,
|
283 |
+
'test/(maestro)onset_f': 0.9605904221534729,
|
284 |
+
'test/(maestro)onset_f_Piano': 0.9606162905693054,
|
285 |
+
'test/(maestro)onset_f_drum': nan}],
|
286 |
+
'-----------------------------------------------------------------',
|
287 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
288 |
+
'Kick Drum': [36, 35],
|
289 |
+
'Snare Drum': [38, 40]},
|
290 |
+
'eval_vocab': [ { 'Bass': array([32, 33, 34, 35, 36, 37, 38, 39]),
|
291 |
+
'Brass': array([56, 57, 58, 59, 60, 61, 62, 63]),
|
292 |
+
'Chromatic Percussion': array([ 8, 9, 10, 11, 12, 13, 14, 15]),
|
293 |
+
'Guitar': array([24, 25, 26, 27, 28, 29, 30, 31]),
|
294 |
+
'Organ': array([16, 17, 18, 19, 20, 21, 22, 23]),
|
295 |
+
'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
296 |
+
'Pipe': array([72, 73, 74, 75, 76, 77, 78, 79]),
|
297 |
+
'Reed': array([64, 65, 66, 67, 68, 69, 70, 71]),
|
298 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]),
|
299 |
+
'Synth Lead': array([80, 81, 82, 83, 84, 85, 86, 87]),
|
300 |
+
'Synth Pad': array([88, 89, 90, 91, 92, 93, 94, 95])}],
|
301 |
+
'presets': ['urmp']},
|
302 |
+
[ { 'test/(urmp)frame_f': 0.8529648780822754,
|
303 |
+
'test/(urmp)frame_f_pc': 0.8660681247711182,
|
304 |
+
'test/(urmp)micro_offset_f_Bass': nan,
|
305 |
+
'test/(urmp)micro_offset_f_Brass': 0.6444324851036072,
|
306 |
+
'test/(urmp)micro_offset_f_Chromatic Percussion': nan,
|
307 |
+
'test/(urmp)micro_offset_f_Guitar': nan,
|
308 |
+
'test/(urmp)micro_offset_f_Organ': nan,
|
309 |
+
'test/(urmp)micro_offset_f_Piano': nan,
|
310 |
+
'test/(urmp)micro_offset_f_Pipe': nan,
|
311 |
+
'test/(urmp)micro_offset_f_Reed': 0.024539878591895103,
|
312 |
+
'test/(urmp)micro_offset_f_Strings': 0.6389819383621216,
|
313 |
+
'test/(urmp)micro_offset_f_Synth Lead': nan,
|
314 |
+
'test/(urmp)micro_offset_f_Synth Pad': nan,
|
315 |
+
'test/(urmp)micro_onset_f_Bass': nan,
|
316 |
+
'test/(urmp)micro_onset_f_Brass': 0.8284024000167847,
|
317 |
+
'test/(urmp)micro_onset_f_Chromatic Percussion': nan,
|
318 |
+
'test/(urmp)micro_onset_f_Guitar': nan,
|
319 |
+
'test/(urmp)micro_onset_f_Organ': nan,
|
320 |
+
'test/(urmp)micro_onset_f_Piano': nan,
|
321 |
+
'test/(urmp)micro_onset_f_Pipe': nan,
|
322 |
+
'test/(urmp)micro_onset_f_Reed': 0.030674846842885017,
|
323 |
+
'test/(urmp)micro_onset_f_Strings': 0.7788345813751221,
|
324 |
+
'test/(urmp)micro_onset_f_Synth Lead': nan,
|
325 |
+
'test/(urmp)micro_onset_f_Synth Pad': nan,
|
326 |
+
'test/(urmp)micro_onset_f_drum': nan,
|
327 |
+
'test/(urmp)multi_f': 0.6515601277351379,
|
328 |
+
'test/(urmp)offset_f': 0.6573383808135986,
|
329 |
+
'test/(urmp)offset_f_Bass': nan,
|
330 |
+
'test/(urmp)offset_f_Brass': 0.6444324851036072,
|
331 |
+
'test/(urmp)offset_f_Chromatic Percussion': nan,
|
332 |
+
'test/(urmp)offset_f_Guitar': nan,
|
333 |
+
'test/(urmp)offset_f_Organ': nan,
|
334 |
+
'test/(urmp)offset_f_Piano': nan,
|
335 |
+
'test/(urmp)offset_f_Pipe': nan,
|
336 |
+
'test/(urmp)offset_f_Reed': 0.025221969932317734,
|
337 |
+
'test/(urmp)offset_f_Strings': 0.6739915609359741,
|
338 |
+
'test/(urmp)offset_f_Synth Lead': nan,
|
339 |
+
'test/(urmp)offset_f_Synth Pad': nan,
|
340 |
+
'test/(urmp)onset_f': 0.7913210391998291,
|
341 |
+
'test/(urmp)onset_f_Bass': nan,
|
342 |
+
'test/(urmp)onset_f_Brass': 0.8284023404121399,
|
343 |
+
'test/(urmp)onset_f_Chromatic Percussion': nan,
|
344 |
+
'test/(urmp)onset_f_Guitar': nan,
|
345 |
+
'test/(urmp)onset_f_Organ': nan,
|
346 |
+
'test/(urmp)onset_f_Piano': nan,
|
347 |
+
'test/(urmp)onset_f_Pipe': nan,
|
348 |
+
'test/(urmp)onset_f_Reed': 0.0308399461209774,
|
349 |
+
'test/(urmp)onset_f_Strings': 0.8027772903442383,
|
350 |
+
'test/(urmp)onset_f_Synth Lead': nan,
|
351 |
+
'test/(urmp)onset_f_Synth Pad': nan,
|
352 |
+
'test/(urmp)onset_f_drum': nan}],
|
353 |
+
'-----------------------------------------------------------------',
|
354 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
355 |
+
'Kick Drum': [36, 35],
|
356 |
+
'Snare Drum': [38, 40]},
|
357 |
+
'eval_vocab': [{'Piano': array([0, 1, 2, 3, 4, 5, 6, 7])}],
|
358 |
+
'presets': ['maps_default']},
|
359 |
+
[ { 'test/(maps)frame_f': 0.7393348217010498,
|
360 |
+
'test/(maps)frame_f_pc': 0.7572816610336304,
|
361 |
+
'test/(maps)micro_offset_f_Piano': 0.5382159948348999,
|
362 |
+
'test/(maps)micro_onset_f_Piano': 0.8817331194877625,
|
363 |
+
'test/(maps)micro_onset_f_drum': nan,
|
364 |
+
'test/(maps)multi_f': 0.5370228290557861,
|
365 |
+
'test/(maps)offset_f': 0.5364712476730347,
|
366 |
+
'test/(maps)offset_f_Piano': 0.5370274186134338,
|
367 |
+
'test/(maps)onset_f': 0.8763453960418701,
|
368 |
+
'test/(maps)onset_f_Piano': 0.8772046566009521,
|
369 |
+
'test/(maps)onset_f_drum': nan}],
|
370 |
+
'-----------------------------------------------------------------',
|
371 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
372 |
+
'Kick Drum': [36, 35],
|
373 |
+
'Snare Drum': [38, 40]},
|
374 |
+
'eval_vocab': [ { 'Bass': array([32, 33, 34, 35, 36, 37, 38, 39]),
|
375 |
+
'Brass': array([56, 57, 58, 59, 60, 61, 62, 63]),
|
376 |
+
'Chromatic Percussion': array([ 8, 9, 10, 11, 12, 13, 14, 15]),
|
377 |
+
'Guitar': array([24, 25, 26, 27, 28, 29, 30, 31]),
|
378 |
+
'Organ': array([16, 17, 18, 19, 20, 21, 22, 23]),
|
379 |
+
'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
380 |
+
'Pipe': array([72, 73, 74, 75, 76, 77, 78, 79]),
|
381 |
+
'Reed': array([64, 65, 66, 67, 68, 69, 70, 71]),
|
382 |
+
'Singing Voice': [100, 101],
|
383 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]),
|
384 |
+
'Synth Lead': array([80, 81, 82, 83, 84, 85, 86, 87]),
|
385 |
+
'Synth Pad': array([88, 89, 90, 91, 92, 93, 94, 95])}],
|
386 |
+
'presets': ['rwc_pop_full']},
|
387 |
+
[ { 'test/(rwc_pop)frame_f': 0.5036451816558838,
|
388 |
+
'test/(rwc_pop)frame_f_pc': 0.6125867366790771,
|
389 |
+
'test/(rwc_pop)melody_oa_Singing Voice': 0.11486613005399704,
|
390 |
+
'test/(rwc_pop)melody_rca_Singing Voice': 0.5412429571151733,
|
391 |
+
'test/(rwc_pop)melody_rpa_Singing Voice': 0.11486613005399704,
|
392 |
+
'test/(rwc_pop)micro_offset_f_Bass': 0.12412633746862411,
|
393 |
+
'test/(rwc_pop)micro_offset_f_Brass': 0.17169594764709473,
|
394 |
+
'test/(rwc_pop)micro_offset_f_Chromatic Percussion': 0.00454988656565547,
|
395 |
+
'test/(rwc_pop)micro_offset_f_Guitar': 0.10689836740493774,
|
396 |
+
'test/(rwc_pop)micro_offset_f_Organ': 0.03003580868244171,
|
397 |
+
'test/(rwc_pop)micro_offset_f_Piano': 0.26919493079185486,
|
398 |
+
'test/(rwc_pop)micro_offset_f_Pipe': 0.0404929593205452,
|
399 |
+
'test/(rwc_pop)micro_offset_f_Reed': 0.0871850997209549,
|
400 |
+
'test/(rwc_pop)micro_offset_f_Singing Voice': 0.05066283047199249,
|
401 |
+
'test/(rwc_pop)micro_offset_f_Strings': 0.07972945272922516,
|
402 |
+
'test/(rwc_pop)micro_offset_f_Synth Lead': 0.00444957846775651,
|
403 |
+
'test/(rwc_pop)micro_offset_f_Synth Pad': 0.003691470716148615,
|
404 |
+
'test/(rwc_pop)micro_onset_f_Bass': 0.15706360340118408,
|
405 |
+
'test/(rwc_pop)micro_onset_f_Brass': 0.21161191165447235,
|
406 |
+
'test/(rwc_pop)micro_onset_f_Chromatic Percussion': 0.01451630424708128,
|
407 |
+
'test/(rwc_pop)micro_onset_f_Guitar': 0.22117385268211365,
|
408 |
+
'test/(rwc_pop)micro_onset_f_Organ': 0.04916893690824509,
|
409 |
+
'test/(rwc_pop)micro_onset_f_Piano': 0.4931323528289795,
|
410 |
+
'test/(rwc_pop)micro_onset_f_Pipe': 0.05809858813881874,
|
411 |
+
'test/(rwc_pop)micro_onset_f_Reed': 0.09726177901029587,
|
412 |
+
'test/(rwc_pop)micro_onset_f_Singing Voice': 0.08127696067094803,
|
413 |
+
'test/(rwc_pop)micro_onset_f_Strings': 0.15419140458106995,
|
414 |
+
'test/(rwc_pop)micro_onset_f_Synth Lead': 0.01814058981835842,
|
415 |
+
'test/(rwc_pop)micro_onset_f_Synth Pad': 0.01224013976752758,
|
416 |
+
'test/(rwc_pop)micro_onset_f_drum': 0.6436583399772644,
|
417 |
+
'test/(rwc_pop)multi_f': 0.25216758251190186,
|
418 |
+
'test/(rwc_pop)offset_f': 0.1824045181274414,
|
419 |
+
'test/(rwc_pop)offset_f_Bass': 0.11402810364961624,
|
420 |
+
'test/(rwc_pop)offset_f_Brass': 0.1329607367515564,
|
421 |
+
'test/(rwc_pop)offset_f_Chromatic Percussion': 0.005995466839522123,
|
422 |
+
'test/(rwc_pop)offset_f_Guitar': 0.09556090831756592,
|
423 |
+
'test/(rwc_pop)offset_f_Organ': 0.028927000239491463,
|
424 |
+
'test/(rwc_pop)offset_f_Piano': 0.24980537593364716,
|
425 |
+
'test/(rwc_pop)offset_f_Pipe': 0.06132758408784866,
|
426 |
+
'test/(rwc_pop)offset_f_Reed': 0.10889723151922226,
|
427 |
+
'test/(rwc_pop)offset_f_Singing Voice': 0.056261900812387466,
|
428 |
+
'test/(rwc_pop)offset_f_Strings': 0.09541783481836319,
|
429 |
+
'test/(rwc_pop)offset_f_Synth Lead': 0.009463030844926834,
|
430 |
+
'test/(rwc_pop)offset_f_Synth Pad': 0.002910840790718794,
|
431 |
+
'test/(rwc_pop)onset_f': 0.33215251564979553,
|
432 |
+
'test/(rwc_pop)onset_f_Bass': 0.14644065499305725,
|
433 |
+
'test/(rwc_pop)onset_f_Brass': 0.16938887536525726,
|
434 |
+
'test/(rwc_pop)onset_f_Chromatic Percussion': 0.01952812261879444,
|
435 |
+
'test/(rwc_pop)onset_f_Guitar': 0.19601118564605713,
|
436 |
+
'test/(rwc_pop)onset_f_Organ': 0.053188469260931015,
|
437 |
+
'test/(rwc_pop)onset_f_Piano': 0.4373621344566345,
|
438 |
+
'test/(rwc_pop)onset_f_Pipe': 0.07636822760105133,
|
439 |
+
'test/(rwc_pop)onset_f_Reed': 0.126461461186409,
|
440 |
+
'test/(rwc_pop)onset_f_Singing Voice': 0.0904482901096344,
|
441 |
+
'test/(rwc_pop)onset_f_Strings': 0.1726456582546234,
|
442 |
+
'test/(rwc_pop)onset_f_Synth Lead': 0.022806964814662933,
|
443 |
+
'test/(rwc_pop)onset_f_Synth Pad': 0.009439672343432903,
|
444 |
+
'test/(rwc_pop)onset_f_drum': 0.6497281193733215}]]
|
logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/result_mc13_full_plus_256_default_mir_st500_voc_debug.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ '-----------------------------------------------------------------',
|
2 |
+
{ 'eval_drum_vocab': None,
|
3 |
+
'eval_vocab': [{'Singing Voice': [100, 101]}],
|
4 |
+
'presets': ['mir_st500_voc_debug']},
|
5 |
+
[ { 'test/(mir_st500)frame_f': 0.8410361409187317,
|
6 |
+
'test/(mir_st500)frame_f_pc': 0.841644287109375,
|
7 |
+
'test/(mir_st500)melody_oa_Singing Voice': 0.7632298469543457,
|
8 |
+
'test/(mir_st500)melody_rca_Singing Voice': 0.765277087688446,
|
9 |
+
'test/(mir_st500)melody_rpa_Singing Voice': 0.7632298469543457,
|
10 |
+
'test/(mir_st500)micro_offset_f_Singing Voice': 0.589411199092865,
|
11 |
+
'test/(mir_st500)micro_onset_f_Singing Voice': 0.7484803795814514,
|
12 |
+
'test/(mir_st500)micro_onset_f_drum': nan,
|
13 |
+
'test/(mir_st500)multi_f': 0.586248517036438,
|
14 |
+
'test/(mir_st500)offset_f': 0.5856963992118835,
|
15 |
+
'test/(mir_st500)offset_f_Singing Voice': 0.5862772464752197,
|
16 |
+
'test/(mir_st500)onset_f': 0.7450660467147827,
|
17 |
+
'test/(mir_st500)onset_f_Singing Voice': 0.745836615562439,
|
18 |
+
'test/(mir_st500)onset_f_drum': nan}]]
|
logs/2024/mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops/result_mc13_full_plus_256_default_rwc_pop_bass.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ '-----------------------------------------------------------------',
|
2 |
+
{ 'add_pitch_class_metric': ['Bass'],
|
3 |
+
'eval_drum_vocab': None,
|
4 |
+
'eval_vocab': [{'Bass': array([32, 33, 34, 35, 36, 37, 38, 39])}],
|
5 |
+
'presets': ['rwc_pop_bass']},
|
6 |
+
[ { 'test/(rwc_pop)frame_f': 0.11498401314020157,
|
7 |
+
'test/(rwc_pop)frame_f_pc': 0.22951407730579376,
|
8 |
+
'test/(rwc_pop)micro_offset_f_Bass': 0.25098368525505066,
|
9 |
+
'test/(rwc_pop)micro_offset_f_Bass_pc': 0.38576385378837585,
|
10 |
+
'test/(rwc_pop)micro_onset_f_Bass': 0.32546746730804443,
|
11 |
+
'test/(rwc_pop)micro_onset_f_Bass_pc': 0.509304940700531,
|
12 |
+
'test/(rwc_pop)micro_onset_f_drum': nan,
|
13 |
+
'test/(rwc_pop)multi_f': 0.1446290910243988,
|
14 |
+
'test/(rwc_pop)offset_f': 0.07808000594377518,
|
15 |
+
'test/(rwc_pop)offset_f_Bass': 0.23580260574817657,
|
16 |
+
'test/(rwc_pop)offset_f_Bass_pc': 0.35772594809532166,
|
17 |
+
'test/(rwc_pop)onset_f': 0.1098790168762207,
|
18 |
+
'test/(rwc_pop)onset_f_Bass': 0.30800098180770874,
|
19 |
+
'test/(rwc_pop)onset_f_Bass_pc': 0.4801085293292999,
|
20 |
+
'test/(rwc_pop)onset_f_drum': nan}]]
|
logs/2024/notask_all_cross_v6_xk2_amp0811_gm_ext_plus_nops_b72/result_mt3_full_plus_default_all_eval_final.json
ADDED
@@ -0,0 +1,654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ '-----------------------------------------------------------------',
|
2 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
3 |
+
'Kick Drum': [36, 35],
|
4 |
+
'Snare Drum': [38, 40]},
|
5 |
+
'eval_vocab': [None],
|
6 |
+
'presets': ['slakh']},
|
7 |
+
[ { 'test/(slakh)offset_f': 0.6083431839942932,
|
8 |
+
'test/(slakh)offset_p': 0.6622373461723328,
|
9 |
+
'test/(slakh)offset_r': 0.5666455626487732,
|
10 |
+
'test/(slakh)onset_f': 0.7774602174758911,
|
11 |
+
'test/(slakh)onset_f_drum': 0.863847553730011,
|
12 |
+
'test/(slakh)onset_p': 0.847067654132843,
|
13 |
+
'test/(slakh)onset_p_drum': 0.8507407307624817,
|
14 |
+
'test/(slakh)onset_r': 0.7236887216567993,
|
15 |
+
'test/(slakh)onset_r_drum': 0.9046840071678162,
|
16 |
+
'test/macro_offset_f': 0.6083431839942932,
|
17 |
+
'test/macro_offset_p': 0.6622373461723328,
|
18 |
+
'test/macro_offset_r': 0.5666455626487732,
|
19 |
+
'test/macro_onset_f': 0.7774602174758911,
|
20 |
+
'test/macro_onset_f_drum': 0.863847553730011,
|
21 |
+
'test/macro_onset_p': 0.847067654132843,
|
22 |
+
'test/macro_onset_p_drum': 0.8507407307624817,
|
23 |
+
'test/macro_onset_r': 0.7236887216567993,
|
24 |
+
'test/macro_onset_r_drum': 0.9046840071678162}],
|
25 |
+
'-----------------------------------------------------------------',
|
26 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
27 |
+
'Kick Drum': [36, 35],
|
28 |
+
'Snare Drum': [38, 40]},
|
29 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
30 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
31 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
32 |
+
'presets': ['musicnet_thickstun']},
|
33 |
+
[ { 'test/(musicnet)offset_f': 0.3357182443141937,
|
34 |
+
'test/(musicnet)offset_f_Piano': 0.48227936029434204,
|
35 |
+
'test/(musicnet)offset_f_Strings': 0.25815683603286743,
|
36 |
+
'test/(musicnet)offset_f_Winds': 0.26120856404304504,
|
37 |
+
'test/(musicnet)offset_p': 0.34956488013267517,
|
38 |
+
'test/(musicnet)offset_p_Piano': 0.4812760055065155,
|
39 |
+
'test/(musicnet)offset_p_Strings': 0.29323798418045044,
|
40 |
+
'test/(musicnet)offset_p_Winds': 0.25695109367370605,
|
41 |
+
'test/(musicnet)offset_r': 0.32450374960899353,
|
42 |
+
'test/(musicnet)offset_r_Piano': 0.48328691720962524,
|
43 |
+
'test/(musicnet)offset_r_Strings': 0.23057259619235992,
|
44 |
+
'test/(musicnet)offset_r_Winds': 0.2656095027923584,
|
45 |
+
'test/(musicnet)onset_f': 0.61080002784729,
|
46 |
+
'test/(musicnet)onset_f_Piano': 0.8672689199447632,
|
47 |
+
'test/(musicnet)onset_f_Strings': 0.41614195704460144,
|
48 |
+
'test/(musicnet)onset_f_Winds': 0.5253411531448364,
|
49 |
+
'test/(musicnet)onset_f_drum': nan,
|
50 |
+
'test/(musicnet)onset_p': 0.6341683268547058,
|
51 |
+
'test/(musicnet)onset_p_Piano': 0.8654646277427673,
|
52 |
+
'test/(musicnet)onset_p_Strings': 0.4726918041706085,
|
53 |
+
'test/(musicnet)onset_p_Winds': 0.5167785286903381,
|
54 |
+
'test/(musicnet)onset_p_drum': nan,
|
55 |
+
'test/(musicnet)onset_r': 0.5917337536811829,
|
56 |
+
'test/(musicnet)onset_r_Piano': 0.8690807819366455,
|
57 |
+
'test/(musicnet)onset_r_Strings': 0.37167689204216003,
|
58 |
+
'test/(musicnet)onset_r_Winds': 0.5341922640800476,
|
59 |
+
'test/(musicnet)onset_r_drum': nan,
|
60 |
+
'test/macro_offset_f': 0.3357182443141937,
|
61 |
+
'test/macro_offset_f_Piano': 0.48227936029434204,
|
62 |
+
'test/macro_offset_f_Strings': 0.25815683603286743,
|
63 |
+
'test/macro_offset_f_Winds': 0.26120856404304504,
|
64 |
+
'test/macro_offset_p': 0.34956488013267517,
|
65 |
+
'test/macro_offset_p_Piano': 0.4812760055065155,
|
66 |
+
'test/macro_offset_p_Strings': 0.29323798418045044,
|
67 |
+
'test/macro_offset_p_Winds': 0.25695109367370605,
|
68 |
+
'test/macro_offset_r': 0.32450374960899353,
|
69 |
+
'test/macro_offset_r_Piano': 0.48328691720962524,
|
70 |
+
'test/macro_offset_r_Strings': 0.23057259619235992,
|
71 |
+
'test/macro_offset_r_Winds': 0.2656095027923584,
|
72 |
+
'test/macro_onset_f': 0.61080002784729,
|
73 |
+
'test/macro_onset_f_Piano': 0.8672689199447632,
|
74 |
+
'test/macro_onset_f_Strings': 0.41614195704460144,
|
75 |
+
'test/macro_onset_f_Winds': 0.5253411531448364,
|
76 |
+
'test/macro_onset_f_drum': nan,
|
77 |
+
'test/macro_onset_p': 0.6341683268547058,
|
78 |
+
'test/macro_onset_p_Piano': 0.8654646277427673,
|
79 |
+
'test/macro_onset_p_Strings': 0.4726918041706085,
|
80 |
+
'test/macro_onset_p_Winds': 0.5167785286903381,
|
81 |
+
'test/macro_onset_p_drum': nan,
|
82 |
+
'test/macro_onset_r': 0.5917337536811829,
|
83 |
+
'test/macro_onset_r_Piano': 0.8690807819366455,
|
84 |
+
'test/macro_onset_r_Strings': 0.37167689204216003,
|
85 |
+
'test/macro_onset_r_Winds': 0.5341922640800476,
|
86 |
+
'test/macro_onset_r_drum': nan}],
|
87 |
+
'-----------------------------------------------------------------',
|
88 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
89 |
+
'Kick Drum': [36, 35],
|
90 |
+
'Snare Drum': [38, 40]},
|
91 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
92 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
93 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
94 |
+
'presets': ['musicnet_thickstun_em']},
|
95 |
+
[ { 'test/(musicnet)offset_f': 0.6265446543693542,
|
96 |
+
'test/(musicnet)offset_f_Piano': 0.8271092772483826,
|
97 |
+
'test/(musicnet)offset_f_Strings': 0.5159010887145996,
|
98 |
+
'test/(musicnet)offset_f_Winds': 0.5344406366348267,
|
99 |
+
'test/(musicnet)offset_p': 0.6488454937934875,
|
100 |
+
'test/(musicnet)offset_p_Piano': 0.8294035792350769,
|
101 |
+
'test/(musicnet)offset_p_Strings': 0.5695708990097046,
|
102 |
+
'test/(musicnet)offset_p_Winds': 0.5244486927986145,
|
103 |
+
'test/(musicnet)offset_r': 0.6074720025062561,
|
104 |
+
'test/(musicnet)offset_r_Piano': 0.8248276114463806,
|
105 |
+
'test/(musicnet)offset_r_Strings': 0.47147470712661743,
|
106 |
+
'test/(musicnet)offset_r_Winds': 0.5448207259178162,
|
107 |
+
'test/(musicnet)onset_f': 0.8307012915611267,
|
108 |
+
'test/(musicnet)onset_f_Piano': 0.9861687421798706,
|
109 |
+
'test/(musicnet)onset_f_Strings': 0.6919905543327332,
|
110 |
+
'test/(musicnet)onset_f_Winds': 0.8070346713066101,
|
111 |
+
'test/(musicnet)onset_f_drum': nan,
|
112 |
+
'test/(musicnet)onset_p': 0.861139714717865,
|
113 |
+
'test/(musicnet)onset_p_Piano': 0.9889042973518372,
|
114 |
+
'test/(musicnet)onset_p_Strings': 0.7639791965484619,
|
115 |
+
'test/(musicnet)onset_p_Winds': 0.791946291923523,
|
116 |
+
'test/(musicnet)onset_p_drum': nan,
|
117 |
+
'test/(musicnet)onset_r': 0.8046172261238098,
|
118 |
+
'test/(musicnet)onset_r_Piano': 0.9834482669830322,
|
119 |
+
'test/(musicnet)onset_r_Strings': 0.6324004530906677,
|
120 |
+
'test/(musicnet)onset_r_Winds': 0.8227091431617737,
|
121 |
+
'test/(musicnet)onset_r_drum': nan,
|
122 |
+
'test/macro_offset_f': 0.6265446543693542,
|
123 |
+
'test/macro_offset_f_Piano': 0.8271092772483826,
|
124 |
+
'test/macro_offset_f_Strings': 0.5159010887145996,
|
125 |
+
'test/macro_offset_f_Winds': 0.5344406366348267,
|
126 |
+
'test/macro_offset_p': 0.6488454937934875,
|
127 |
+
'test/macro_offset_p_Piano': 0.8294035792350769,
|
128 |
+
'test/macro_offset_p_Strings': 0.5695708990097046,
|
129 |
+
'test/macro_offset_p_Winds': 0.5244486927986145,
|
130 |
+
'test/macro_offset_r': 0.6074720025062561,
|
131 |
+
'test/macro_offset_r_Piano': 0.8248276114463806,
|
132 |
+
'test/macro_offset_r_Strings': 0.47147470712661743,
|
133 |
+
'test/macro_offset_r_Winds': 0.5448207259178162,
|
134 |
+
'test/macro_onset_f': 0.8307012915611267,
|
135 |
+
'test/macro_onset_f_Piano': 0.9861687421798706,
|
136 |
+
'test/macro_onset_f_Strings': 0.6919905543327332,
|
137 |
+
'test/macro_onset_f_Winds': 0.8070346713066101,
|
138 |
+
'test/macro_onset_f_drum': nan,
|
139 |
+
'test/macro_onset_p': 0.861139714717865,
|
140 |
+
'test/macro_onset_p_Piano': 0.9889042973518372,
|
141 |
+
'test/macro_onset_p_Strings': 0.7639791965484619,
|
142 |
+
'test/macro_onset_p_Winds': 0.791946291923523,
|
143 |
+
'test/macro_onset_p_drum': nan,
|
144 |
+
'test/macro_onset_r': 0.8046172261238098,
|
145 |
+
'test/macro_onset_r_Piano': 0.9834482669830322,
|
146 |
+
'test/macro_onset_r_Strings': 0.6324004530906677,
|
147 |
+
'test/macro_onset_r_Winds': 0.8227091431617737,
|
148 |
+
'test/macro_onset_r_drum': nan}],
|
149 |
+
'-----------------------------------------------------------------',
|
150 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
151 |
+
'Kick Drum': [36, 35],
|
152 |
+
'Snare Drum': [38, 40]},
|
153 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
154 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
155 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
156 |
+
'presets': ['musicnet_thickstun_ext']},
|
157 |
+
[ { 'test/(musicnet)offset_f': 0.3959674835205078,
|
158 |
+
'test/(musicnet)offset_f_Piano': 0.3805476725101471,
|
159 |
+
'test/(musicnet)offset_f_Strings': 0.4404304027557373,
|
160 |
+
'test/(musicnet)offset_f_Winds': 0.30910158157348633,
|
161 |
+
'test/(musicnet)offset_p': 0.39991551637649536,
|
162 |
+
'test/(musicnet)offset_p_Piano': 0.30609330534935,
|
163 |
+
'test/(musicnet)offset_p_Strings': 0.45054253935813904,
|
164 |
+
'test/(musicnet)offset_p_Winds': 0.198689267039299,
|
165 |
+
'test/(musicnet)offset_r': 0.39315736293792725,
|
166 |
+
'test/(musicnet)offset_r_Piano': 0.3786337375640869,
|
167 |
+
'test/(musicnet)offset_r_Strings': 0.4319221079349518,
|
168 |
+
'test/(musicnet)offset_r_Winds': 0.3212359547615051,
|
169 |
+
'test/(musicnet)onset_f': 0.6437932252883911,
|
170 |
+
'test/(musicnet)onset_f_Piano': 0.7200534343719482,
|
171 |
+
'test/(musicnet)onset_f_Strings': 0.6363336443901062,
|
172 |
+
'test/(musicnet)onset_f_Winds': 0.5482662916183472,
|
173 |
+
'test/(musicnet)onset_f_drum': nan,
|
174 |
+
'test/(musicnet)onset_p': 0.6502920985221863,
|
175 |
+
'test/(musicnet)onset_p_Piano': 0.5792450308799744,
|
176 |
+
'test/(musicnet)onset_p_Strings': 0.652239203453064,
|
177 |
+
'test/(musicnet)onset_p_Winds': 0.3531217575073242,
|
178 |
+
'test/(musicnet)onset_p_drum': nan,
|
179 |
+
'test/(musicnet)onset_r': 0.6391699910163879,
|
180 |
+
'test/(musicnet)onset_r_Piano': 0.716358482837677,
|
181 |
+
'test/(musicnet)onset_r_Strings': 0.6230224967002869,
|
182 |
+
'test/(musicnet)onset_r_Winds': 0.5685860514640808,
|
183 |
+
'test/(musicnet)onset_r_drum': nan,
|
184 |
+
'test/macro_offset_f': 0.3959674835205078,
|
185 |
+
'test/macro_offset_f_Piano': 0.3805476725101471,
|
186 |
+
'test/macro_offset_f_Strings': 0.4404304027557373,
|
187 |
+
'test/macro_offset_f_Winds': 0.30910158157348633,
|
188 |
+
'test/macro_offset_p': 0.39991551637649536,
|
189 |
+
'test/macro_offset_p_Piano': 0.30609330534935,
|
190 |
+
'test/macro_offset_p_Strings': 0.45054253935813904,
|
191 |
+
'test/macro_offset_p_Winds': 0.198689267039299,
|
192 |
+
'test/macro_offset_r': 0.39315736293792725,
|
193 |
+
'test/macro_offset_r_Piano': 0.3786337375640869,
|
194 |
+
'test/macro_offset_r_Strings': 0.4319221079349518,
|
195 |
+
'test/macro_offset_r_Winds': 0.3212359547615051,
|
196 |
+
'test/macro_onset_f': 0.6437932252883911,
|
197 |
+
'test/macro_onset_f_Piano': 0.7200534343719482,
|
198 |
+
'test/macro_onset_f_Strings': 0.6363336443901062,
|
199 |
+
'test/macro_onset_f_Winds': 0.5482662916183472,
|
200 |
+
'test/macro_onset_f_drum': nan,
|
201 |
+
'test/macro_onset_p': 0.6502920985221863,
|
202 |
+
'test/macro_onset_p_Piano': 0.5792450308799744,
|
203 |
+
'test/macro_onset_p_Strings': 0.652239203453064,
|
204 |
+
'test/macro_onset_p_Winds': 0.3531217575073242,
|
205 |
+
'test/macro_onset_p_drum': nan,
|
206 |
+
'test/macro_onset_r': 0.6391699910163879,
|
207 |
+
'test/macro_onset_r_Piano': 0.716358482837677,
|
208 |
+
'test/macro_onset_r_Strings': 0.6230224967002869,
|
209 |
+
'test/macro_onset_r_Winds': 0.5685860514640808,
|
210 |
+
'test/macro_onset_r_drum': nan}],
|
211 |
+
'-----------------------------------------------------------------',
|
212 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
213 |
+
'Kick Drum': [36, 35],
|
214 |
+
'Snare Drum': [38, 40]},
|
215 |
+
'eval_vocab': [ { 'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
216 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]),
|
217 |
+
'Winds': array([64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79])}],
|
218 |
+
'presets': ['musicnet_thickstun_ext_em']},
|
219 |
+
[ { 'test/(musicnet)offset_f': 0.735069990158081,
|
220 |
+
'test/(musicnet)offset_f_Piano': 0.7454416751861572,
|
221 |
+
'test/(musicnet)offset_f_Strings': 0.7720898389816284,
|
222 |
+
'test/(musicnet)offset_f_Winds': 0.6024924516677856,
|
223 |
+
'test/(musicnet)offset_p': 0.7449241280555725,
|
224 |
+
'test/(musicnet)offset_p_Piano': 0.6016747951507568,
|
225 |
+
'test/(musicnet)offset_p_Strings': 0.7943185567855835,
|
226 |
+
'test/(musicnet)offset_p_Winds': 0.38696134090423584,
|
227 |
+
'test/(musicnet)offset_r': 0.7270892262458801,
|
228 |
+
'test/(musicnet)offset_r_Piano': 0.7391372919082642,
|
229 |
+
'test/(musicnet)offset_r_Strings': 0.752295732498169,
|
230 |
+
'test/(musicnet)offset_r_Winds': 0.6266684532165527,
|
231 |
+
'test/(musicnet)onset_f': 0.8967338800430298,
|
232 |
+
'test/(musicnet)onset_f_Piano': 0.9509001970291138,
|
233 |
+
'test/(musicnet)onset_f_Strings': 0.8831208944320679,
|
234 |
+
'test/(musicnet)onset_f_Winds': 0.8164795637130737,
|
235 |
+
'test/(musicnet)onset_f_drum': nan,
|
236 |
+
'test/(musicnet)onset_p': 0.9097173810005188,
|
237 |
+
'test/(musicnet)onset_p_Piano': 0.7678321003913879,
|
238 |
+
'test/(musicnet)onset_p_Strings': 0.9111027717590332,
|
239 |
+
'test/(musicnet)onset_p_Winds': 0.5252859592437744,
|
240 |
+
'test/(musicnet)onset_p_drum': nan,
|
241 |
+
'test/(musicnet)onset_r': 0.8861774206161499,
|
242 |
+
'test/(musicnet)onset_r_Piano': 0.9424763321876526,
|
243 |
+
'test/(musicnet)onset_r_Strings': 0.8583273887634277,
|
244 |
+
'test/(musicnet)onset_r_Winds': 0.8477022647857666,
|
245 |
+
'test/(musicnet)onset_r_drum': nan,
|
246 |
+
'test/macro_offset_f': 0.735069990158081,
|
247 |
+
'test/macro_offset_f_Piano': 0.7454416751861572,
|
248 |
+
'test/macro_offset_f_Strings': 0.7720898389816284,
|
249 |
+
'test/macro_offset_f_Winds': 0.6024924516677856,
|
250 |
+
'test/macro_offset_p': 0.7449241280555725,
|
251 |
+
'test/macro_offset_p_Piano': 0.6016747951507568,
|
252 |
+
'test/macro_offset_p_Strings': 0.7943185567855835,
|
253 |
+
'test/macro_offset_p_Winds': 0.38696134090423584,
|
254 |
+
'test/macro_offset_r': 0.7270892262458801,
|
255 |
+
'test/macro_offset_r_Piano': 0.7391372919082642,
|
256 |
+
'test/macro_offset_r_Strings': 0.752295732498169,
|
257 |
+
'test/macro_offset_r_Winds': 0.6266684532165527,
|
258 |
+
'test/macro_onset_f': 0.8967338800430298,
|
259 |
+
'test/macro_onset_f_Piano': 0.9509001970291138,
|
260 |
+
'test/macro_onset_f_Strings': 0.8831208944320679,
|
261 |
+
'test/macro_onset_f_Winds': 0.8164795637130737,
|
262 |
+
'test/macro_onset_f_drum': nan,
|
263 |
+
'test/macro_onset_p': 0.9097173810005188,
|
264 |
+
'test/macro_onset_p_Piano': 0.7678321003913879,
|
265 |
+
'test/macro_onset_p_Strings': 0.9111027717590332,
|
266 |
+
'test/macro_onset_p_Winds': 0.5252859592437744,
|
267 |
+
'test/macro_onset_p_drum': nan,
|
268 |
+
'test/macro_onset_r': 0.8861774206161499,
|
269 |
+
'test/macro_onset_r_Piano': 0.9424763321876526,
|
270 |
+
'test/macro_onset_r_Strings': 0.8583273887634277,
|
271 |
+
'test/macro_onset_r_Winds': 0.8477022647857666,
|
272 |
+
'test/macro_onset_r_drum': nan}],
|
273 |
+
'-----------------------------------------------------------------',
|
274 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
275 |
+
'Kick Drum': [36, 35],
|
276 |
+
'Snare Drum': [38, 40]},
|
277 |
+
'eval_vocab': [{'Singing Voice': [100]}],
|
278 |
+
'presets': ['mir_st500_voc']},
|
279 |
+
[ { 'test/(mir_st500)offset_f': 0.5048608183860779,
|
280 |
+
'test/(mir_st500)offset_f_Singing Voice': 0.5061416029930115,
|
281 |
+
'test/(mir_st500)offset_p': 0.5133110880851746,
|
282 |
+
'test/(mir_st500)offset_p_Singing Voice': 0.5161048769950867,
|
283 |
+
'test/(mir_st500)offset_r': 0.4993303716182709,
|
284 |
+
'test/(mir_st500)offset_r_Singing Voice': 0.49919605255126953,
|
285 |
+
'test/(mir_st500)onset_f': 0.6959291696548462,
|
286 |
+
'test/(mir_st500)onset_f_Singing Voice': 0.6976490616798401,
|
287 |
+
'test/(mir_st500)onset_f_drum': nan,
|
288 |
+
'test/(mir_st500)onset_p': 0.7078328728675842,
|
289 |
+
'test/(mir_st500)onset_p_Singing Voice': 0.7117308974266052,
|
290 |
+
'test/(mir_st500)onset_p_drum': 0.0,
|
291 |
+
'test/(mir_st500)onset_r': 0.6881252527236938,
|
292 |
+
'test/(mir_st500)onset_r_Singing Voice': 0.6878247261047363,
|
293 |
+
'test/(mir_st500)onset_r_drum': nan,
|
294 |
+
'test/macro_offset_f': 0.5048608183860779,
|
295 |
+
'test/macro_offset_f_Singing Voice': 0.5061416029930115,
|
296 |
+
'test/macro_offset_p': 0.5133110880851746,
|
297 |
+
'test/macro_offset_p_Singing Voice': 0.5161048769950867,
|
298 |
+
'test/macro_offset_r': 0.4993303716182709,
|
299 |
+
'test/macro_offset_r_Singing Voice': 0.49919605255126953,
|
300 |
+
'test/macro_onset_f': 0.6959291696548462,
|
301 |
+
'test/macro_onset_f_Singing Voice': 0.6976490616798401,
|
302 |
+
'test/macro_onset_f_drum': nan,
|
303 |
+
'test/macro_onset_p': 0.7078328728675842,
|
304 |
+
'test/macro_onset_p_Singing Voice': 0.7117308974266052,
|
305 |
+
'test/macro_onset_p_drum': 0.0,
|
306 |
+
'test/macro_onset_r': 0.6881252527236938,
|
307 |
+
'test/macro_onset_r_Singing Voice': 0.6878247261047363,
|
308 |
+
'test/macro_onset_r_drum': nan}],
|
309 |
+
'-----------------------------------------------------------------',
|
310 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
311 |
+
'Kick Drum': [36, 35],
|
312 |
+
'Snare Drum': [38, 40]},
|
313 |
+
'eval_vocab': [{'Singing Voice': [100]}],
|
314 |
+
'presets': ['mir_st500']},
|
315 |
+
[ { 'test/(mir_st500)offset_f': 0.08752609044313431,
|
316 |
+
'test/(mir_st500)offset_f_Singing Voice': 0.4340810775756836,
|
317 |
+
'test/(mir_st500)offset_p': 0.04927415773272514,
|
318 |
+
'test/(mir_st500)offset_p_Singing Voice': 0.44511955976486206,
|
319 |
+
'test/(mir_st500)offset_r': 0.4603072702884674,
|
320 |
+
'test/(mir_st500)offset_r_Singing Voice': 0.427217572927475,
|
321 |
+
'test/(mir_st500)onset_f': 0.1349075436592102,
|
322 |
+
'test/(mir_st500)onset_f_Singing Voice': 0.6468554735183716,
|
323 |
+
'test/(mir_st500)onset_f_drum': nan,
|
324 |
+
'test/(mir_st500)onset_p': 0.07584631443023682,
|
325 |
+
'test/(mir_st500)onset_p_Singing Voice': 0.6652325391769409,
|
326 |
+
'test/(mir_st500)onset_p_drum': 0.0,
|
327 |
+
'test/(mir_st500)onset_r': 0.7170646786689758,
|
328 |
+
'test/(mir_st500)onset_r_Singing Voice': 0.6353515386581421,
|
329 |
+
'test/(mir_st500)onset_r_drum': nan,
|
330 |
+
'test/macro_offset_f': 0.08752609044313431,
|
331 |
+
'test/macro_offset_f_Singing Voice': 0.4340810775756836,
|
332 |
+
'test/macro_offset_p': 0.04927415773272514,
|
333 |
+
'test/macro_offset_p_Singing Voice': 0.44511955976486206,
|
334 |
+
'test/macro_offset_r': 0.4603072702884674,
|
335 |
+
'test/macro_offset_r_Singing Voice': 0.427217572927475,
|
336 |
+
'test/macro_onset_f': 0.1349075436592102,
|
337 |
+
'test/macro_onset_f_Singing Voice': 0.6468554735183716,
|
338 |
+
'test/macro_onset_f_drum': nan,
|
339 |
+
'test/macro_onset_p': 0.07584631443023682,
|
340 |
+
'test/macro_onset_p_Singing Voice': 0.6652325391769409,
|
341 |
+
'test/macro_onset_p_drum': 0.0,
|
342 |
+
'test/macro_onset_r': 0.7170646786689758,
|
343 |
+
'test/macro_onset_r_Singing Voice': 0.6353515386581421,
|
344 |
+
'test/macro_onset_r_drum': nan}],
|
345 |
+
'-----------------------------------------------------------------',
|
346 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
347 |
+
'Kick Drum': [36, 35],
|
348 |
+
'Snare Drum': [38, 40]},
|
349 |
+
'eval_vocab': [None],
|
350 |
+
'presets': ['enstdrums_dtp']},
|
351 |
+
[ { 'test/(enstdrums)offset_f': nan,
|
352 |
+
'test/(enstdrums)offset_p': 0.0,
|
353 |
+
'test/(enstdrums)offset_r': nan,
|
354 |
+
'test/(enstdrums)onset_f': nan,
|
355 |
+
'test/(enstdrums)onset_f_drum': 0.8802791833877563,
|
356 |
+
'test/(enstdrums)onset_p': 0.0,
|
357 |
+
'test/(enstdrums)onset_p_drum': 0.8829243183135986,
|
358 |
+
'test/(enstdrums)onset_r': nan,
|
359 |
+
'test/(enstdrums)onset_r_drum': 0.8793073296546936,
|
360 |
+
'test/macro_offset_f': nan,
|
361 |
+
'test/macro_offset_p': 0.0,
|
362 |
+
'test/macro_offset_r': nan,
|
363 |
+
'test/macro_onset_f': nan,
|
364 |
+
'test/macro_onset_f_drum': 0.8802791833877563,
|
365 |
+
'test/macro_onset_p': 0.0,
|
366 |
+
'test/macro_onset_p_drum': 0.8829243183135986,
|
367 |
+
'test/macro_onset_r': nan,
|
368 |
+
'test/macro_onset_r_drum': 0.8793073296546936}],
|
369 |
+
'-----------------------------------------------------------------',
|
370 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
371 |
+
'Kick Drum': [36, 35],
|
372 |
+
'Snare Drum': [38, 40]},
|
373 |
+
'eval_vocab': [None],
|
374 |
+
'presets': ['enstdrums_dtm']},
|
375 |
+
[ { 'test/(enstdrums)offset_f': nan,
|
376 |
+
'test/(enstdrums)offset_p': 0.0,
|
377 |
+
'test/(enstdrums)offset_r': nan,
|
378 |
+
'test/(enstdrums)onset_f': nan,
|
379 |
+
'test/(enstdrums)onset_f_drum': 0.8131747245788574,
|
380 |
+
'test/(enstdrums)onset_p': 0.0,
|
381 |
+
'test/(enstdrums)onset_p_drum': 0.8289992213249207,
|
382 |
+
'test/(enstdrums)onset_r': nan,
|
383 |
+
'test/(enstdrums)onset_r_drum': 0.8042031526565552,
|
384 |
+
'test/macro_offset_f': nan,
|
385 |
+
'test/macro_offset_p': 0.0,
|
386 |
+
'test/macro_offset_r': nan,
|
387 |
+
'test/macro_onset_f': nan,
|
388 |
+
'test/macro_onset_f_drum': 0.8131747245788574,
|
389 |
+
'test/macro_onset_p': 0.0,
|
390 |
+
'test/macro_onset_p_drum': 0.8289992213249207,
|
391 |
+
'test/macro_onset_r': nan,
|
392 |
+
'test/macro_onset_r_drum': 0.8042031526565552}],
|
393 |
+
'-----------------------------------------------------------------',
|
394 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
395 |
+
'Kick Drum': [36, 35],
|
396 |
+
'Snare Drum': [38, 40]},
|
397 |
+
'eval_vocab': [None],
|
398 |
+
'presets': ['guitarset_pshift']},
|
399 |
+
[ { 'test/(guitarset)offset_f': 0.7842957973480225,
|
400 |
+
'test/(guitarset)offset_p': 0.7916637063026428,
|
401 |
+
'test/(guitarset)offset_r': 0.7788985967636108,
|
402 |
+
'test/(guitarset)onset_f': 0.8876206874847412,
|
403 |
+
'test/(guitarset)onset_f_drum': nan,
|
404 |
+
'test/(guitarset)onset_p': 0.8953325748443604,
|
405 |
+
'test/(guitarset)onset_p_drum': 0.0,
|
406 |
+
'test/(guitarset)onset_r': 0.8822049498558044,
|
407 |
+
'test/(guitarset)onset_r_drum': nan,
|
408 |
+
'test/macro_offset_f': 0.7842957973480225,
|
409 |
+
'test/macro_offset_p': 0.7916637063026428,
|
410 |
+
'test/macro_offset_r': 0.7788985967636108,
|
411 |
+
'test/macro_onset_f': 0.8876206874847412,
|
412 |
+
'test/macro_onset_f_drum': nan,
|
413 |
+
'test/macro_onset_p': 0.8953325748443604,
|
414 |
+
'test/macro_onset_p_drum': 0.0,
|
415 |
+
'test/macro_onset_r': 0.8822049498558044,
|
416 |
+
'test/macro_onset_r_drum': nan}],
|
417 |
+
'-----------------------------------------------------------------',
|
418 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
419 |
+
'Kick Drum': [36, 35],
|
420 |
+
'Snare Drum': [38, 40]},
|
421 |
+
'eval_vocab': [{'Bass': array([32, 33, 34, 35, 36, 37, 38, 39])}],
|
422 |
+
'presets': ['rwc_pop_bass']},
|
423 |
+
[ { 'test/(rwc_pop)offset_f': 0.08935749530792236,
|
424 |
+
'test/(rwc_pop)offset_f_Bass': 0.2769419252872467,
|
425 |
+
'test/(rwc_pop)offset_p': 0.05388070270419121,
|
426 |
+
'test/(rwc_pop)offset_p_Bass': 0.33313581347465515,
|
427 |
+
'test/(rwc_pop)offset_r': 0.3093760907649994,
|
428 |
+
'test/(rwc_pop)offset_r_Bass': 0.24953310191631317,
|
429 |
+
'test/(rwc_pop)onset_f': 0.12388304620981216,
|
430 |
+
'test/(rwc_pop)onset_f_Bass': 0.364982932806015,
|
431 |
+
'test/(rwc_pop)onset_f_drum': nan,
|
432 |
+
'test/(rwc_pop)onset_p': 0.07472005486488342,
|
433 |
+
'test/(rwc_pop)onset_p_Bass': 0.438348650932312,
|
434 |
+
'test/(rwc_pop)onset_p_drum': 0.0,
|
435 |
+
'test/(rwc_pop)onset_r': 0.43698573112487793,
|
436 |
+
'test/(rwc_pop)onset_r_Bass': 0.3284376561641693,
|
437 |
+
'test/(rwc_pop)onset_r_drum': nan,
|
438 |
+
'test/macro_offset_f': 0.08935749530792236,
|
439 |
+
'test/macro_offset_f_Bass': 0.2769419252872467,
|
440 |
+
'test/macro_offset_p': 0.05388070270419121,
|
441 |
+
'test/macro_offset_p_Bass': 0.33313581347465515,
|
442 |
+
'test/macro_offset_r': 0.3093760907649994,
|
443 |
+
'test/macro_offset_r_Bass': 0.24953310191631317,
|
444 |
+
'test/macro_onset_f': 0.12388304620981216,
|
445 |
+
'test/macro_onset_f_Bass': 0.364982932806015,
|
446 |
+
'test/macro_onset_f_drum': nan,
|
447 |
+
'test/macro_onset_p': 0.07472005486488342,
|
448 |
+
'test/macro_onset_p_Bass': 0.438348650932312,
|
449 |
+
'test/macro_onset_p_drum': 0.0,
|
450 |
+
'test/macro_onset_r': 0.43698573112487793,
|
451 |
+
'test/macro_onset_r_Bass': 0.3284376561641693,
|
452 |
+
'test/macro_onset_r_drum': nan}],
|
453 |
+
'-----------------------------------------------------------------',
|
454 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
455 |
+
'Kick Drum': [36, 35],
|
456 |
+
'Snare Drum': [38, 40]},
|
457 |
+
'eval_vocab': [{'Piano': array([0, 1, 2, 3, 4, 5, 6, 7])}],
|
458 |
+
'presets': ['maestro']},
|
459 |
+
[ { 'test/(maestro)offset_f': 0.8026146292686462,
|
460 |
+
'test/(maestro)offset_f_Piano': 0.8027480244636536,
|
461 |
+
'test/(maestro)offset_p': 0.8284508585929871,
|
462 |
+
'test/(maestro)offset_p_Piano': 0.8287417888641357,
|
463 |
+
'test/(maestro)offset_r': 0.7789899706840515,
|
464 |
+
'test/(maestro)offset_r_Piano': 0.7789827585220337,
|
465 |
+
'test/(maestro)onset_f': 0.9469380974769592,
|
466 |
+
'test/(maestro)onset_f_Piano': 0.9470942616462708,
|
467 |
+
'test/(maestro)onset_f_drum': nan,
|
468 |
+
'test/(maestro)onset_p': 0.9780700206756592,
|
469 |
+
'test/(maestro)onset_p_Piano': 0.9784316420555115,
|
470 |
+
'test/(maestro)onset_p_drum': 0.0,
|
471 |
+
'test/(maestro)onset_r': 0.9185109734535217,
|
472 |
+
'test/(maestro)onset_r_Piano': 0.9184830784797668,
|
473 |
+
'test/(maestro)onset_r_drum': nan,
|
474 |
+
'test/macro_offset_f': 0.8026146292686462,
|
475 |
+
'test/macro_offset_f_Piano': 0.8027480244636536,
|
476 |
+
'test/macro_offset_p': 0.8284508585929871,
|
477 |
+
'test/macro_offset_p_Piano': 0.8287417888641357,
|
478 |
+
'test/macro_offset_r': 0.7789899706840515,
|
479 |
+
'test/macro_offset_r_Piano': 0.7789827585220337,
|
480 |
+
'test/macro_onset_f': 0.9469380974769592,
|
481 |
+
'test/macro_onset_f_Piano': 0.9470942616462708,
|
482 |
+
'test/macro_onset_f_drum': nan,
|
483 |
+
'test/macro_onset_p': 0.9780700206756592,
|
484 |
+
'test/macro_onset_p_Piano': 0.9784316420555115,
|
485 |
+
'test/macro_onset_p_drum': 0.0,
|
486 |
+
'test/macro_onset_r': 0.9185109734535217,
|
487 |
+
'test/macro_onset_r_Piano': 0.9184830784797668,
|
488 |
+
'test/macro_onset_r_drum': nan}],
|
489 |
+
'-----------------------------------------------------------------',
|
490 |
+
{ 'eval_drum_vocab': { 'Hi-Hat': [42, 44, 46, 22, 26],
|
491 |
+
'Kick Drum': [36, 35],
|
492 |
+
'Snare Drum': [38, 40]},
|
493 |
+
'eval_vocab': [ { 'Bass': array([32, 33, 34, 35, 36, 37, 38, 39]),
|
494 |
+
'Brass': array([56, 57, 58, 59, 60, 61, 62, 63]),
|
495 |
+
'Chromatic Percussion': array([ 8, 9, 10, 11, 12, 13, 14, 15]),
|
496 |
+
'Guitar': array([24, 25, 26, 27, 28, 29, 30, 31]),
|
497 |
+
'Organ': array([16, 17, 18, 19, 20, 21, 22, 23]),
|
498 |
+
'Piano': array([0, 1, 2, 3, 4, 5, 6, 7]),
|
499 |
+
'Pipe': array([72, 73, 74, 75, 76, 77, 78, 79]),
|
500 |
+
'Reed': array([64, 65, 66, 67, 68, 69, 70, 71]),
|
501 |
+
'Strings': array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]),
|
502 |
+
'Synth Lead': array([80, 81, 82, 83, 84, 85, 86, 87]),
|
503 |
+
'Synth Pad': array([88, 89, 90, 91, 92, 93, 94, 95])}],
|
504 |
+
'presets': ['urmp']},
|
505 |
+
[ { 'test/(urmp)offset_f': 0.6520498991012573,
|
506 |
+
'test/(urmp)offset_f_Bass': nan,
|
507 |
+
'test/(urmp)offset_f_Brass': 0.6848000288009644,
|
508 |
+
'test/(urmp)offset_f_Chromatic Percussion': nan,
|
509 |
+
'test/(urmp)offset_f_Guitar': nan,
|
510 |
+
'test/(urmp)offset_f_Organ': nan,
|
511 |
+
'test/(urmp)offset_f_Piano': nan,
|
512 |
+
'test/(urmp)offset_f_Pipe': nan,
|
513 |
+
'test/(urmp)offset_f_Reed': 0.10385715961456299,
|
514 |
+
'test/(urmp)offset_f_Strings': 0.6481411457061768,
|
515 |
+
'test/(urmp)offset_f_Synth Lead': nan,
|
516 |
+
'test/(urmp)offset_f_Synth Pad': nan,
|
517 |
+
'test/(urmp)offset_p': 0.6840448975563049,
|
518 |
+
'test/(urmp)offset_p_Bass': nan,
|
519 |
+
'test/(urmp)offset_p_Brass': 0.17973124980926514,
|
520 |
+
'test/(urmp)offset_p_Chromatic Percussion': nan,
|
521 |
+
'test/(urmp)offset_p_Guitar': 0.0,
|
522 |
+
'test/(urmp)offset_p_Organ': nan,
|
523 |
+
'test/(urmp)offset_p_Piano': nan,
|
524 |
+
'test/(urmp)offset_p_Pipe': 0.0,
|
525 |
+
'test/(urmp)offset_p_Reed': 0.0595238134264946,
|
526 |
+
'test/(urmp)offset_p_Strings': 0.6781148910522461,
|
527 |
+
'test/(urmp)offset_p_Synth Lead': nan,
|
528 |
+
'test/(urmp)offset_p_Synth Pad': nan,
|
529 |
+
'test/(urmp)offset_r': 0.6238455176353455,
|
530 |
+
'test/(urmp)offset_r_Bass': nan,
|
531 |
+
'test/(urmp)offset_r_Brass': 0.6537678241729736,
|
532 |
+
'test/(urmp)offset_r_Chromatic Percussion': nan,
|
533 |
+
'test/(urmp)offset_r_Guitar': nan,
|
534 |
+
'test/(urmp)offset_r_Organ': nan,
|
535 |
+
'test/(urmp)offset_r_Piano': nan,
|
536 |
+
'test/(urmp)offset_r_Pipe': nan,
|
537 |
+
'test/(urmp)offset_r_Reed': 0.06984802335500717,
|
538 |
+
'test/(urmp)offset_r_Strings': 0.621437132358551,
|
539 |
+
'test/(urmp)offset_r_Synth Lead': nan,
|
540 |
+
'test/(urmp)offset_r_Synth Pad': nan,
|
541 |
+
'test/(urmp)onset_f': 0.8094742298126221,
|
542 |
+
'test/(urmp)onset_f_Bass': nan,
|
543 |
+
'test/(urmp)onset_f_Brass': 0.865066647529602,
|
544 |
+
'test/(urmp)onset_f_Chromatic Percussion': nan,
|
545 |
+
'test/(urmp)onset_f_Guitar': nan,
|
546 |
+
'test/(urmp)onset_f_Organ': nan,
|
547 |
+
'test/(urmp)onset_f_Piano': nan,
|
548 |
+
'test/(urmp)onset_f_Pipe': nan,
|
549 |
+
'test/(urmp)onset_f_Reed': 0.1948803812265396,
|
550 |
+
'test/(urmp)onset_f_Strings': 0.7926455736160278,
|
551 |
+
'test/(urmp)onset_f_Synth Lead': nan,
|
552 |
+
'test/(urmp)onset_f_Synth Pad': nan,
|
553 |
+
'test/(urmp)onset_f_drum': nan,
|
554 |
+
'test/(urmp)onset_p': 0.8502802848815918,
|
555 |
+
'test/(urmp)onset_p_Bass': nan,
|
556 |
+
'test/(urmp)onset_p_Brass': 0.22704367339611053,
|
557 |
+
'test/(urmp)onset_p_Chromatic Percussion': nan,
|
558 |
+
'test/(urmp)onset_p_Guitar': 0.0,
|
559 |
+
'test/(urmp)onset_p_Organ': nan,
|
560 |
+
'test/(urmp)onset_p_Piano': nan,
|
561 |
+
'test/(urmp)onset_p_Pipe': 0.0,
|
562 |
+
'test/(urmp)onset_p_Reed': 0.10924369841814041,
|
563 |
+
'test/(urmp)onset_p_Strings': 0.8278226852416992,
|
564 |
+
'test/(urmp)onset_p_Synth Lead': nan,
|
565 |
+
'test/(urmp)onset_p_Synth Pad': nan,
|
566 |
+
'test/(urmp)onset_p_drum': nan,
|
567 |
+
'test/(urmp)onset_r': 0.7737197875976562,
|
568 |
+
'test/(urmp)onset_r_Bass': nan,
|
569 |
+
'test/(urmp)onset_r_Brass': 0.8258655667304993,
|
570 |
+
'test/(urmp)onset_r_Chromatic Percussion': nan,
|
571 |
+
'test/(urmp)onset_r_Guitar': nan,
|
572 |
+
'test/(urmp)onset_r_Organ': nan,
|
573 |
+
'test/(urmp)onset_r_Piano': nan,
|
574 |
+
'test/(urmp)onset_r_Pipe': nan,
|
575 |
+
'test/(urmp)onset_r_Reed': 0.1319148987531662,
|
576 |
+
'test/(urmp)onset_r_Strings': 0.761354923248291,
|
577 |
+
'test/(urmp)onset_r_Synth Lead': nan,
|
578 |
+
'test/(urmp)onset_r_Synth Pad': nan,
|
579 |
+
'test/(urmp)onset_r_drum': nan,
|
580 |
+
'test/macro_offset_f': 0.6520498991012573,
|
581 |
+
'test/macro_offset_f_Bass': nan,
|
582 |
+
'test/macro_offset_f_Brass': 0.6848000288009644,
|
583 |
+
'test/macro_offset_f_Chromatic Percussion': nan,
|
584 |
+
'test/macro_offset_f_Guitar': nan,
|
585 |
+
'test/macro_offset_f_Organ': nan,
|
586 |
+
'test/macro_offset_f_Piano': nan,
|
587 |
+
'test/macro_offset_f_Pipe': nan,
|
588 |
+
'test/macro_offset_f_Reed': 0.10385715961456299,
|
589 |
+
'test/macro_offset_f_Strings': 0.6481411457061768,
|
590 |
+
'test/macro_offset_f_Synth Lead': nan,
|
591 |
+
'test/macro_offset_f_Synth Pad': nan,
|
592 |
+
'test/macro_offset_p': 0.6840448975563049,
|
593 |
+
'test/macro_offset_p_Bass': nan,
|
594 |
+
'test/macro_offset_p_Brass': 0.17973124980926514,
|
595 |
+
'test/macro_offset_p_Chromatic Percussion': nan,
|
596 |
+
'test/macro_offset_p_Guitar': 0.0,
|
597 |
+
'test/macro_offset_p_Organ': nan,
|
598 |
+
'test/macro_offset_p_Piano': nan,
|
599 |
+
'test/macro_offset_p_Pipe': 0.0,
|
600 |
+
'test/macro_offset_p_Reed': 0.0595238134264946,
|
601 |
+
'test/macro_offset_p_Strings': 0.6781148910522461,
|
602 |
+
'test/macro_offset_p_Synth Lead': nan,
|
603 |
+
'test/macro_offset_p_Synth Pad': nan,
|
604 |
+
'test/macro_offset_r': 0.6238455176353455,
|
605 |
+
'test/macro_offset_r_Bass': nan,
|
606 |
+
'test/macro_offset_r_Brass': 0.6537678241729736,
|
607 |
+
'test/macro_offset_r_Chromatic Percussion': nan,
|
608 |
+
'test/macro_offset_r_Guitar': nan,
|
609 |
+
'test/macro_offset_r_Organ': nan,
|
610 |
+
'test/macro_offset_r_Piano': nan,
|
611 |
+
'test/macro_offset_r_Pipe': nan,
|
612 |
+
'test/macro_offset_r_Reed': 0.06984802335500717,
|
613 |
+
'test/macro_offset_r_Strings': 0.621437132358551,
|
614 |
+
'test/macro_offset_r_Synth Lead': nan,
|
615 |
+
'test/macro_offset_r_Synth Pad': nan,
|
616 |
+
'test/macro_onset_f': 0.8094742298126221,
|
617 |
+
'test/macro_onset_f_Bass': nan,
|
618 |
+
'test/macro_onset_f_Brass': 0.865066647529602,
|
619 |
+
'test/macro_onset_f_Chromatic Percussion': nan,
|
620 |
+
'test/macro_onset_f_Guitar': nan,
|
621 |
+
'test/macro_onset_f_Organ': nan,
|
622 |
+
'test/macro_onset_f_Piano': nan,
|
623 |
+
'test/macro_onset_f_Pipe': nan,
|
624 |
+
'test/macro_onset_f_Reed': 0.1948803812265396,
|
625 |
+
'test/macro_onset_f_Strings': 0.7926455736160278,
|
626 |
+
'test/macro_onset_f_Synth Lead': nan,
|
627 |
+
'test/macro_onset_f_Synth Pad': nan,
|
628 |
+
'test/macro_onset_f_drum': nan,
|
629 |
+
'test/macro_onset_p': 0.8502802848815918,
|
630 |
+
'test/macro_onset_p_Bass': nan,
|
631 |
+
'test/macro_onset_p_Brass': 0.22704367339611053,
|
632 |
+
'test/macro_onset_p_Chromatic Percussion': nan,
|
633 |
+
'test/macro_onset_p_Guitar': 0.0,
|
634 |
+
'test/macro_onset_p_Organ': nan,
|
635 |
+
'test/macro_onset_p_Piano': nan,
|
636 |
+
'test/macro_onset_p_Pipe': 0.0,
|
637 |
+
'test/macro_onset_p_Reed': 0.10924369841814041,
|
638 |
+
'test/macro_onset_p_Strings': 0.8278226852416992,
|
639 |
+
'test/macro_onset_p_Synth Lead': nan,
|
640 |
+
'test/macro_onset_p_Synth Pad': nan,
|
641 |
+
'test/macro_onset_p_drum': nan,
|
642 |
+
'test/macro_onset_r': 0.7737197875976562,
|
643 |
+
'test/macro_onset_r_Bass': nan,
|
644 |
+
'test/macro_onset_r_Brass': 0.8258655667304993,
|
645 |
+
'test/macro_onset_r_Chromatic Percussion': nan,
|
646 |
+
'test/macro_onset_r_Guitar': nan,
|
647 |
+
'test/macro_onset_r_Organ': nan,
|
648 |
+
'test/macro_onset_r_Piano': nan,
|
649 |
+
'test/macro_onset_r_Pipe': nan,
|
650 |
+
'test/macro_onset_r_Reed': 0.1319148987531662,
|
651 |
+
'test/macro_onset_r_Strings': 0.761354923248291,
|
652 |
+
'test/macro_onset_r_Synth Lead': nan,
|
653 |
+
'test/macro_onset_r_Synth Pad': nan,
|
654 |
+
'test/macro_onset_r_drum': nan}]]
|
model/RoPE/RoPE.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""rotary_embedding.py - Rotary Embedding based on https://github.com/lucidrains/rotary-embedding-torch"""
|
2 |
+
from typing import Literal, Union, Optional
|
3 |
+
from math import pi, log
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.nn import Module, ModuleList
|
8 |
+
from torch.cuda.amp import autocast
|
9 |
+
from torch import nn, einsum, broadcast_tensors, Tensor
|
10 |
+
|
11 |
+
|
12 |
+
# helper functions
|
13 |
+
def exists(val):
|
14 |
+
return val is not None
|
15 |
+
|
16 |
+
|
17 |
+
def default(val, d):
|
18 |
+
return val if exists(val) else d
|
19 |
+
|
20 |
+
|
21 |
+
# broadcat, as tortoise-tts was using it
|
22 |
+
def broadcat(tensors, dim=-1):
|
23 |
+
broadcasted_tensors = broadcast_tensors(*tensors)
|
24 |
+
return torch.cat(broadcasted_tensors, dim=dim)
|
25 |
+
|
26 |
+
|
27 |
+
# rotary embedding helper functions
|
28 |
+
def rotate_half(x):
|
29 |
+
x = rearrange(x, '... (d r) -> ... d r', r=2)
|
30 |
+
x1, x2 = x.unbind(dim=-1)
|
31 |
+
x = torch.stack((-x2, x1), dim=-1)
|
32 |
+
return rearrange(x, '... d r -> ... (d r)')
|
33 |
+
|
34 |
+
|
35 |
+
@autocast(enabled=False)
|
36 |
+
def apply_rotary_emb(freqs, t, start_index=0, scale=1., seq_dim=-2):
|
37 |
+
"""Applies rotary embedding for pixels."""
|
38 |
+
if t.ndim == 3:
|
39 |
+
seq_len = t.shape[seq_dim]
|
40 |
+
freqs = freqs[-seq_len:].to(t)
|
41 |
+
|
42 |
+
rot_dim = freqs.shape[-1]
|
43 |
+
end_index = start_index + rot_dim
|
44 |
+
|
45 |
+
assert rot_dim <= t.shape[
|
46 |
+
-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
47 |
+
|
48 |
+
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
49 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
50 |
+
return torch.cat((t_left, t, t_right), dim=-1)
|
51 |
+
|
52 |
+
|
53 |
+
# learned rotation helpers
|
54 |
+
def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None):
|
55 |
+
if exists(freq_ranges):
|
56 |
+
rotations = einsum('..., f -> ... f', rotations, freq_ranges)
|
57 |
+
rotations = rearrange(rotations, '... r f -> ... (r f)')
|
58 |
+
|
59 |
+
rotations = repeat(rotations, '... n -> ... (n r)', r=2)
|
60 |
+
return apply_rotary_emb(rotations, t, start_index=start_index)
|
61 |
+
|
62 |
+
|
63 |
+
# classes
|
64 |
+
class RotaryEmbedding(Module):
|
65 |
+
|
66 |
+
def __init__(self,
|
67 |
+
dim,
|
68 |
+
custom_freqs: Optional[Tensor] = None,
|
69 |
+
freqs_for: Union[Literal['lang'], Literal['pixel'], Literal['constant']] = 'lang',
|
70 |
+
theta=10000,
|
71 |
+
max_freq=10,
|
72 |
+
num_freqs=1,
|
73 |
+
learned_freq=False,
|
74 |
+
use_xpos=False,
|
75 |
+
xpos_scale_base=512,
|
76 |
+
interpolate_factor=1.,
|
77 |
+
theta_rescale_factor=1.,
|
78 |
+
seq_before_head_dim=False,
|
79 |
+
cache_if_possible=True):
|
80 |
+
super().__init__()
|
81 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
82 |
+
# has some connection to NTK literature
|
83 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
84 |
+
|
85 |
+
theta *= theta_rescale_factor**(dim / (dim - 2))
|
86 |
+
|
87 |
+
self.freqs_for = freqs_for
|
88 |
+
|
89 |
+
if exists(custom_freqs):
|
90 |
+
freqs = custom_freqs
|
91 |
+
elif freqs_for == 'lang':
|
92 |
+
freqs = 1. / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
93 |
+
elif freqs_for == 'pixel':
|
94 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
95 |
+
elif freqs_for == 'constant':
|
96 |
+
freqs = torch.ones(num_freqs).float()
|
97 |
+
|
98 |
+
self.cache_if_possible = cache_if_possible
|
99 |
+
|
100 |
+
self.tmp_store('cached_freqs', None)
|
101 |
+
self.tmp_store('cached_scales', None)
|
102 |
+
|
103 |
+
self.freqs = nn.Parameter(freqs, requires_grad=learned_freq)
|
104 |
+
|
105 |
+
self.learned_freq = learned_freq
|
106 |
+
|
107 |
+
# dummy for device
|
108 |
+
|
109 |
+
self.tmp_store('dummy', torch.tensor(0))
|
110 |
+
|
111 |
+
# default sequence dimension
|
112 |
+
|
113 |
+
self.seq_before_head_dim = seq_before_head_dim
|
114 |
+
self.default_seq_dim = -3 if seq_before_head_dim else -2
|
115 |
+
|
116 |
+
# interpolation factors
|
117 |
+
|
118 |
+
assert interpolate_factor >= 1.
|
119 |
+
self.interpolate_factor = interpolate_factor
|
120 |
+
|
121 |
+
# xpos
|
122 |
+
|
123 |
+
self.use_xpos = use_xpos
|
124 |
+
if not use_xpos:
|
125 |
+
self.tmp_store('scale', None)
|
126 |
+
return
|
127 |
+
|
128 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
129 |
+
self.scale_base = xpos_scale_base
|
130 |
+
self.tmp_store('scale', scale)
|
131 |
+
|
132 |
+
@property
|
133 |
+
def device(self):
|
134 |
+
return self.dummy.device
|
135 |
+
|
136 |
+
def tmp_store(self, key, value):
|
137 |
+
self.register_buffer(key, value, persistent=False)
|
138 |
+
|
139 |
+
def get_seq_pos(self, seq_len, device, dtype, offset=0):
|
140 |
+
return (torch.arange(seq_len, device=device, dtype=dtype) + offset) / self.interpolate_factor
|
141 |
+
|
142 |
+
def rotate_queries_or_keys(self, t, seq_dim=None, offset=0, freq_seq_len=None):
|
143 |
+
seq_dim = default(seq_dim, self.default_seq_dim)
|
144 |
+
|
145 |
+
assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
|
146 |
+
|
147 |
+
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
|
148 |
+
|
149 |
+
if exists(freq_seq_len):
|
150 |
+
assert freq_seq_len >= seq_len
|
151 |
+
seq_len = freq_seq_len
|
152 |
+
|
153 |
+
freqs = self.forward(self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset),
|
154 |
+
seq_len=seq_len,
|
155 |
+
offset=offset)
|
156 |
+
|
157 |
+
if seq_dim == -3:
|
158 |
+
freqs = rearrange(freqs, 'n d -> n 1 d')
|
159 |
+
|
160 |
+
return apply_rotary_emb(freqs, t, seq_dim=seq_dim)
|
161 |
+
|
162 |
+
def rotate_queries_with_cached_keys(self, q, k, seq_dim=None, offset=0):
|
163 |
+
seq_dim = default(seq_dim, self.default_seq_dim)
|
164 |
+
|
165 |
+
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
|
166 |
+
assert q_len <= k_len
|
167 |
+
rotated_q = self.rotate_queries_or_keys(q, seq_dim=seq_dim, freq_seq_len=k_len)
|
168 |
+
rotated_k = self.rotate_queries_or_keys(k, seq_dim=seq_dim)
|
169 |
+
|
170 |
+
rotated_q = rotated_q.type(q.dtype)
|
171 |
+
rotated_k = rotated_k.type(k.dtype)
|
172 |
+
|
173 |
+
return rotated_q, rotated_k
|
174 |
+
|
175 |
+
def rotate_queries_and_keys(self, q, k, seq_dim=None):
|
176 |
+
seq_dim = default(seq_dim, self.default_seq_dim)
|
177 |
+
|
178 |
+
assert self.use_xpos
|
179 |
+
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
|
180 |
+
|
181 |
+
seq = self.get_seq_pos(seq_len, dtype=dtype, device=device)
|
182 |
+
|
183 |
+
freqs = self.forward(seq, seq_len=seq_len)
|
184 |
+
scale = self.get_scale(seq, seq_len=seq_len).to(dtype)
|
185 |
+
|
186 |
+
if seq_dim == -3:
|
187 |
+
freqs = rearrange(freqs, 'n d -> n 1 d')
|
188 |
+
scale = rearrange(scale, 'n d -> n 1 d')
|
189 |
+
|
190 |
+
rotated_q = apply_rotary_emb(freqs, q, scale=scale, seq_dim=seq_dim)
|
191 |
+
rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1, seq_dim=seq_dim)
|
192 |
+
|
193 |
+
rotated_q = rotated_q.type(q.dtype)
|
194 |
+
rotated_k = rotated_k.type(k.dtype)
|
195 |
+
|
196 |
+
return rotated_q, rotated_k
|
197 |
+
|
198 |
+
def get_scale(self, t: Tensor, seq_len: Optional[int] = None, offset=0):
|
199 |
+
assert self.use_xpos
|
200 |
+
|
201 |
+
should_cache = (self.cache_if_possible and exists(seq_len))
|
202 |
+
|
203 |
+
if (
|
204 |
+
should_cache and \
|
205 |
+
exists(self.cached_scales) and \
|
206 |
+
(seq_len + offset) <= self.cached_scales.shape[0]
|
207 |
+
):
|
208 |
+
return self.cached_scales[offset:(offset + seq_len)]
|
209 |
+
|
210 |
+
scale = 1.
|
211 |
+
if self.use_xpos:
|
212 |
+
power = (t - len(t) // 2) / self.scale_base
|
213 |
+
scale = self.scale**rearrange(power, 'n -> n 1')
|
214 |
+
scale = torch.cat((scale, scale), dim=-1)
|
215 |
+
|
216 |
+
if should_cache:
|
217 |
+
self.tmp_store('cached_scales', scale)
|
218 |
+
|
219 |
+
return scale
|
220 |
+
|
221 |
+
def get_axial_freqs(self, *dims):
|
222 |
+
Colon = slice(None)
|
223 |
+
all_freqs = []
|
224 |
+
|
225 |
+
for ind, dim in enumerate(dims):
|
226 |
+
if self.freqs_for == 'pixel':
|
227 |
+
pos = torch.linspace(-1, 1, steps=dim, device=self.device)
|
228 |
+
else:
|
229 |
+
pos = torch.arange(dim, device=self.device)
|
230 |
+
|
231 |
+
freqs = self.forward(pos, seq_len=dim)
|
232 |
+
|
233 |
+
all_axis = [None] * len(dims)
|
234 |
+
all_axis[ind] = Colon
|
235 |
+
|
236 |
+
new_axis_slice = (Ellipsis, *all_axis, Colon)
|
237 |
+
all_freqs.append(freqs[new_axis_slice])
|
238 |
+
|
239 |
+
all_freqs = broadcast_tensors(*all_freqs)
|
240 |
+
return torch.cat(all_freqs, dim=-1)
|
241 |
+
|
242 |
+
@autocast(enabled=False)
|
243 |
+
def forward(self, t: Tensor, seq_len=None, offset=0):
|
244 |
+
should_cache = (
|
245 |
+
self.cache_if_possible and \
|
246 |
+
not self.learned_freq and \
|
247 |
+
exists(seq_len) and \
|
248 |
+
self.freqs_for != 'pixel'
|
249 |
+
)
|
250 |
+
|
251 |
+
if (
|
252 |
+
should_cache and \
|
253 |
+
exists(self.cached_freqs) and \
|
254 |
+
(offset + seq_len) <= self.cached_freqs.shape[0]
|
255 |
+
):
|
256 |
+
return self.cached_freqs[offset:(offset + seq_len)].detach()
|
257 |
+
|
258 |
+
freqs = self.freqs
|
259 |
+
|
260 |
+
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
|
261 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r=2)
|
262 |
+
|
263 |
+
if should_cache:
|
264 |
+
self.tmp_store('cached_freqs', freqs.detach())
|
265 |
+
|
266 |
+
return freqs
|
267 |
+
|
268 |
+
# custom method for applying rotary embeddings
|
269 |
+
@torch.compiler.disable
|
270 |
+
def apply_rotary_custom(self, t: torch.Tensor):
|
271 |
+
"""Apply rotary embeddings to queries and keys, if k is None, only q is rotated.
|
272 |
+
Depending on the freqs type, the rotation will be different."""
|
273 |
+
if self.freqs_for == 'lang':
|
274 |
+
return self.rotate_queries_or_keys(t, seq_dim=-2)
|
275 |
+
elif self.freqs_for == 'pixel':
|
276 |
+
return apply_rotary_emb(self.get_axial_freqs(t.shape[-2]), t)
|
277 |
+
else:
|
278 |
+
raise ValueError(f"freqs_for must be 'lang' or 'pixel', but got {self.freqs_for}")
|
279 |
+
|
280 |
+
|
281 |
+
def test_rotary_embedding_lang():
|
282 |
+
d = 32 # d by head
|
283 |
+
q = torch.ones(1, 4, 110, 32) # (B, H, T, D) for multi-head attention
|
284 |
+
rdim = d // 2 # will do a partial rotation on half, or d
|
285 |
+
|
286 |
+
rotary = RotaryEmbedding(dim=rdim, freqs_for="lang")
|
287 |
+
q = rotary.rotate_queries_or_keys(q, seq_dim=-2)
|
288 |
+
|
289 |
+
# visualize
|
290 |
+
import matplotlib.pyplot as plt
|
291 |
+
plt.imshow(q[0, 0, :, :].numpy().T, origin='lower')
|
292 |
+
|
293 |
+
|
294 |
+
def test_rotary_embedding_pixel():
|
295 |
+
d = 32 # d by head
|
296 |
+
q = torch.ones(1, 4, 128, 32) # (B*T, H, F, C/H) for multi-head attention
|
297 |
+
rdim = d // 2 # will do a partial rotation on half
|
298 |
+
|
299 |
+
rotary = RotaryEmbedding(dim=rdim, freqs_for="pixel", max_freq=10)
|
300 |
+
freqs = rotary.get_axial_freqs(128)
|
301 |
+
|
302 |
+
q = apply_rotary_emb(freqs, q) # also k, if needed
|
303 |
+
|
304 |
+
# visualize
|
305 |
+
import matplotlib.pyplot as plt
|
306 |
+
plt.imshow(q[0, 0, :, :].numpy().T, origin='lower')
|
model/RoPE/__pycache__/RoPE.cpython-310.pyc
ADDED
Binary file (8.58 kB). View file
|
|
model/__pycache__/conformer_helper.cpython-310.pyc
ADDED
Binary file (7.91 kB). View file
|
|
model/__pycache__/perceiver_helper.cpython-310.pyc
ADDED
Binary file (13.7 kB). View file
|
|
model/__pycache__/perceiver_mod.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
model/__pycache__/pitchshift_layer.cpython-310.pyc
ADDED
Binary file (4.34 kB). View file
|
|
model/__pycache__/positional_encoding.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
model/__pycache__/t5mod.cpython-310.pyc
ADDED
Binary file (14 kB). View file
|
|
model/__pycache__/t5mod_helper.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
model/conv_block.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
from typing import Literal
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
|
17 |
+
def init_layer(layer: nn.Module) -> None:
|
18 |
+
"""Initialize a Linear or Convolutional layer."""
|
19 |
+
nn.init.xavier_uniform_(layer.weight)
|
20 |
+
if hasattr(layer, "bias") and layer.bias is not None:
|
21 |
+
layer.bias.data.zero_()
|
22 |
+
|
23 |
+
|
24 |
+
def init_bn(bn: nn.Module) -> None:
|
25 |
+
"""Initialize a Batchnorm layer."""
|
26 |
+
bn.bias.data.zero_()
|
27 |
+
bn.weight.data.fill_(1.0)
|
28 |
+
bn.running_mean.data.zero_()
|
29 |
+
bn.running_var.data.fill_(1.0)
|
30 |
+
|
31 |
+
|
32 |
+
def act(x: torch.Tensor, activation: str) -> torch.Tensor:
|
33 |
+
"""Activation function."""
|
34 |
+
funcs = {"relu": F.relu_, "leaky_relu": lambda x: F.leaky_relu_(x, 0.01), "swish": lambda x: x * torch.sigmoid(x)}
|
35 |
+
return funcs.get(activation, lambda x: Exception("Incorrect activation!"))(x)
|
36 |
+
|
37 |
+
|
38 |
+
class Res2DAVPBlock(nn.Module):
|
39 |
+
|
40 |
+
def __init__(self, in_channels, out_channels, kernel_size, avp_kernel_size, activation):
|
41 |
+
"""Convolutional residual block modified fromr bytedance/music_source_separation."""
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
padding = kernel_size[0] // 2, kernel_size[1] // 2
|
45 |
+
|
46 |
+
self.activation = activation
|
47 |
+
self.bn1, self.bn2 = nn.BatchNorm2d(out_channels), nn.BatchNorm2d(out_channels)
|
48 |
+
|
49 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=False)
|
50 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, padding=padding, bias=False)
|
51 |
+
|
52 |
+
self.is_shortcut = in_channels != out_channels
|
53 |
+
if self.is_shortcut:
|
54 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 1))
|
55 |
+
|
56 |
+
self.avp = nn.AvgPool2d(avp_kernel_size)
|
57 |
+
self.init_weights()
|
58 |
+
|
59 |
+
def init_weights(self):
|
60 |
+
for m in [self.conv1, self.conv2] + ([self.shortcut] if self.is_shortcut else []):
|
61 |
+
init_layer(m)
|
62 |
+
for m in [self.bn1, self.bn2]:
|
63 |
+
init_bn(m)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
origin = x
|
67 |
+
x = act(self.bn1(self.conv1(x)), self.activation)
|
68 |
+
x = self.bn2(self.conv2(x))
|
69 |
+
x += self.shortcut(origin) if self.is_shortcut else origin
|
70 |
+
x = act(x, self.activation)
|
71 |
+
return self.avp(x)
|
72 |
+
|
73 |
+
|
74 |
+
class PreEncoderBlockRes3B(nn.Module):
|
75 |
+
|
76 |
+
def __init__(self, in_channels, out_channels, kernel_size=(3, 3), avp_kernerl_size=(1, 2), activation='relu'):
|
77 |
+
"""Pre-Encoder with 3 Res2DAVPBlocks."""
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.blocks = nn.ModuleList([
|
81 |
+
Res2DAVPBlock(in_channels if i == 0 else out_channels, out_channels, kernel_size, avp_kernerl_size,
|
82 |
+
activation) for i in range(3)
|
83 |
+
])
|
84 |
+
|
85 |
+
def forward(self, x): # (B, T, F)
|
86 |
+
x = rearrange(x, 'b t f -> b 1 t f')
|
87 |
+
for block in self.blocks:
|
88 |
+
x = block(x)
|
89 |
+
return rearrange(x, 'b c t f -> b t f c')
|
90 |
+
|
91 |
+
|
92 |
+
def test_res3b():
|
93 |
+
# mel-spec input
|
94 |
+
x = torch.randn(2, 256, 512) # (B, T, F)
|
95 |
+
pre = PreEncoderBlockRes3B(in_channels=1, out_channels=128)
|
96 |
+
x = pre(x) # (2, 256, 64, 128): B T,F,C
|
97 |
+
|
98 |
+
x = torch.randn(2, 110, 1024) # (B, T, F)
|
99 |
+
pre = PreEncoderBlockRes3B(in_channels=1, out_channels=128)
|
100 |
+
x = pre(x) # (2, 110, 128, 128): B,T,F,C
|
101 |
+
|
102 |
+
|
103 |
+
# ====================================================================================================================
|
104 |
+
# PreEncoderBlockHFTT: hFT-Transformer-like Pre-encoder
|
105 |
+
# ====================================================================================================================
|
106 |
+
class PreEncoderBlockHFTT(nn.Module):
|
107 |
+
|
108 |
+
def __init__(self, margin_pre=15, margin_post=16) -> None:
|
109 |
+
"""Pre-Encoder with hFT-Transformer-like convolutions."""
|
110 |
+
super().__init__()
|
111 |
+
|
112 |
+
self.margin_pre, self.margin_post = margin_pre, margin_post
|
113 |
+
self.conv = nn.Conv2d(1, 4, kernel_size=(1, 5), padding='same', padding_mode='zeros')
|
114 |
+
self.emb_freq = nn.Linear(128, 128)
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
+
# x: (B, T, F)
|
118 |
+
x = rearrange(x, 'b t f -> b 1 f t') # (B, 1, F, T) or (2, 1, 128, 110)
|
119 |
+
x = F.pad(x, (self.margin_pre, self.margin_post), value=1e-7) # (B, 1, F, T+margin) or (2,1,128,141)
|
120 |
+
x = self.conv(x) # (B, C, F, T+margin) or (2, 4, 128, 141)
|
121 |
+
x = x.unfold(dimension=3, size=32, step=1) # (B, c1, T, F, c2) or (2, 4, 128, 110, 32)
|
122 |
+
x = rearrange(x, 'b c1 f t c2 -> b t f (c1 c2)') # (B, T, F, C) or (2, 110, 128, 128)
|
123 |
+
return self.emb_freq(x) # (B, T, F, C) or (2, 110, 128, 128)
|
124 |
+
|
125 |
+
|
126 |
+
def test_hftt():
|
127 |
+
# from model.spectrogram import get_spectrogram_layer_from_audio_cfg
|
128 |
+
# from config.config import audio_cfg as default_audio_cfg
|
129 |
+
# audio_cfg = default_audio_cfg
|
130 |
+
# audio_cfg['codec'] = 'melspec'
|
131 |
+
# audio_cfg['hop_length'] = 300
|
132 |
+
# audio_cfg['n_mels'] = 128
|
133 |
+
# x = torch.randn(2, 1, 32767)
|
134 |
+
# mspec, _ = get_spectrogram_layer_from_audio_cfg(audio_cfg)
|
135 |
+
# x = mspec(x)
|
136 |
+
x = torch.randn(2, 110, 128) # (B, T, F)
|
137 |
+
pre_enc_hftt = PreEncoderBlockHFTT()
|
138 |
+
y = pre_enc_hftt(x) # (2, 110, 128, 128): B, T, F, C
|
139 |
+
|
140 |
+
|
141 |
+
# ====================================================================================================================
|
142 |
+
# PreEncoderBlockRes3BHFTT: hFT-Transformer-like Pre-encoder with Res2DAVPBlock and spec input
|
143 |
+
# ====================================================================================================================
|
144 |
+
class PreEncoderBlockRes3BHFTT(nn.Module):
|
145 |
+
|
146 |
+
def __init__(self, margin_pre: int = 15, margin_post: int = 16) -> None:
|
147 |
+
"""Pre-Encoder with hFT-Transformer-like convolutions.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
margin_pre (int): padding before the input
|
151 |
+
margin_post (int): padding after the input
|
152 |
+
stack_dim (Literal['c', 'f']): stack dimension. channel or frequency
|
153 |
+
|
154 |
+
"""
|
155 |
+
super().__init__()
|
156 |
+
self.margin_pre, self.margin_post = margin_pre, margin_post
|
157 |
+
self.res3b = PreEncoderBlockRes3B(in_channels=1, out_channels=4)
|
158 |
+
self.emb_freq = nn.Linear(128, 128)
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
161 |
+
# x: (B, T, F) or (2, 110, 1024), input spectrogram
|
162 |
+
x = rearrange(x, 'b t f -> b f t') # (2, 1024, 110): B,F,T
|
163 |
+
x = F.pad(x, (self.margin_pre, self.margin_post), value=1e-7) # (2, 1024, 141): B,F,T+margin
|
164 |
+
x = rearrange(x, 'b f t -> b t f') # (2, 141, 1024): B,T+margin,F
|
165 |
+
x = self.res3b(x) # (2, 141, 128, 4): B,T+margin,F,C
|
166 |
+
x = x.unfold(dimension=1, size=32, step=1) # (B, T, F, C1, C2) or (2, 110, 128, 4, 32)
|
167 |
+
x = rearrange(x, 'b t f c1 c2 -> b t f (c1 c2)') # (B, T, F, C) or (2, 110, 128, 128)
|
168 |
+
return self.emb_freq(x) # (B, T, F, C) or (2, 110, 128, 128)
|
169 |
+
|
170 |
+
|
171 |
+
def test_res3b_hftt():
|
172 |
+
# from model.spectrogram import get_spectrogram_layer_from_audio_cfg
|
173 |
+
# from config.config import audio_cfg as default_audio_cfg
|
174 |
+
# audio_cfg = default_audio_cfg
|
175 |
+
# audio_cfg['codec'] = 'spec'
|
176 |
+
# audio_cfg['hop_length'] = 300
|
177 |
+
# x = torch.randn(2, 1, 32767)
|
178 |
+
# spec, _ = get_spectrogram_layer_from_audio_cfg(audio_cfg)
|
179 |
+
# x = spec(x) # (2, 110, 1024): B,T,F
|
180 |
+
x = torch.randn(2, 110, 1024) # (B, T, F)
|
181 |
+
pre_enc_res3b_hftt = PreEncoderBlockRes3BHFTT()
|
182 |
+
y = pre_enc_res3b_hftt(x) # (2, 110, 128, 128): B, T, F, C
|
183 |
+
|
184 |
+
|
185 |
+
# # ====================================================================================================================
|
186 |
+
# # PreEncoderBlockConv1D: Pre-encoder without activation, with Melspec input
|
187 |
+
# # ====================================================================================================================
|
188 |
+
# class PreEncoderBlockConv1D(nn.Module):
|
189 |
+
|
190 |
+
# def __init__(self,
|
191 |
+
# in_channels,
|
192 |
+
# out_channels,
|
193 |
+
# kernel_size=3) -> None:
|
194 |
+
# """Pre-Encoder with 1D convolution."""
|
195 |
+
# super().__init__()
|
196 |
+
# self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=1)
|
197 |
+
# self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=kernel_size, stride=1)
|
198 |
+
|
199 |
+
# def forward(self, x: torch.Tensor) -> torch.Tensor:
|
200 |
+
# # x: (B, T, F) or (2, 128, 256), input melspec
|
201 |
+
# x = rearrange(x, 'b t f -> b f t') # (2, 256, 128): B,F,T
|
202 |
+
# x = self.conv1(x) # (2, 128, 128): B,F,T
|
203 |
+
# return rearrange(x, 'b f t -> b t f') # (2, 110, 128): B,T,F
|
204 |
+
|
205 |
+
# def test_conv1d():
|
206 |
+
# # from model.spectrogram import get_spectrogram_layer_from_audio_cfg
|
207 |
+
# # from config.config import audio_cfg as default_audio_cfg
|
208 |
+
# # audio_cfg = default_audio_cfg
|
209 |
+
# # audio_cfg['codec'] = 'melspec'
|
210 |
+
# # audio_cfg['hop_length'] = 256
|
211 |
+
# # audio_cfg['n_mels'] = 512
|
212 |
+
# # x = torch.randn(2, 1, 32767)
|
213 |
+
# # mspec, _ = get_spectrogram_layer_from_audio_cfg(audio_cfg)
|
214 |
+
# # x = mspec(x)
|
215 |
+
# x = torch.randn(2, 128, 128) # (B, T, F)
|
216 |
+
# pre_enc_conv1d = PreEncoderBlockConv1D(in_channels=1, out_channels=128)
|
217 |
+
# y = pre_enc_conv1d(x) # (2, 110, 128, 128): B, T, F, C
|
model/lr_scheduler.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""lr_schedule.py"""
|
11 |
+
import torch
|
12 |
+
from typing import Dict, Optional
|
13 |
+
|
14 |
+
|
15 |
+
def get_lr_scheduler(optimizer: torch.optim.Optimizer, scheduler_name: str, base_lr: float, scheduler_cfg: Dict):
|
16 |
+
|
17 |
+
if scheduler_name.lower() == 'cosine':
|
18 |
+
from torch.optim.lr_scheduler import (
|
19 |
+
SequentialLR,
|
20 |
+
LinearLR,
|
21 |
+
CosineAnnealingLR,
|
22 |
+
)
|
23 |
+
|
24 |
+
scheduler1 = LinearLR(
|
25 |
+
optimizer,
|
26 |
+
start_factor=0.5,
|
27 |
+
end_factor=1,
|
28 |
+
total_iters=scheduler_cfg["warmup_steps"],
|
29 |
+
last_epoch=-1,
|
30 |
+
)
|
31 |
+
|
32 |
+
scheduler2 = CosineAnnealingLR(
|
33 |
+
optimizer,
|
34 |
+
T_max=scheduler_cfg["total_steps"] - scheduler_cfg["warmup_steps"],
|
35 |
+
eta_min=scheduler_cfg["final_cosine"],
|
36 |
+
)
|
37 |
+
|
38 |
+
lr_scheduler = SequentialLR(optimizer,
|
39 |
+
schedulers=[scheduler1, scheduler2],
|
40 |
+
milestones=[scheduler_cfg["warmup_steps"]])
|
41 |
+
elif scheduler_name.lower() == 'legacy':
|
42 |
+
import math
|
43 |
+
from torch.optim.lr_scheduler import (
|
44 |
+
SequentialLR,
|
45 |
+
LinearLR,
|
46 |
+
LambdaLR,
|
47 |
+
)
|
48 |
+
|
49 |
+
msg = "You are using T5 legacy LR Schedule, it's independent from the optim.base_lr"
|
50 |
+
print(msg)
|
51 |
+
|
52 |
+
num_steps_optimizer1 = math.ceil(scheduler_cfg["total_steps"] * 0.9)
|
53 |
+
iters_left_for_optimizer2 = scheduler_cfg["total_steps"] - num_steps_optimizer1
|
54 |
+
|
55 |
+
scheduler1 = LambdaLR(optimizer, lambda step: min(base_lr, 1.0 / math.sqrt(step)) / base_lr
|
56 |
+
if step else base_lr / base_lr)
|
57 |
+
|
58 |
+
scheduler2 = LinearLR(optimizer,
|
59 |
+
start_factor=(min(base_lr, 1.0 / math.sqrt(num_steps_optimizer1)) / base_lr),
|
60 |
+
end_factor=0,
|
61 |
+
total_iters=iters_left_for_optimizer2,
|
62 |
+
last_epoch=-1)
|
63 |
+
|
64 |
+
lr_scheduler = SequentialLR(
|
65 |
+
optimizer,
|
66 |
+
schedulers=[scheduler1, scheduler2],
|
67 |
+
milestones=[num_steps_optimizer1],
|
68 |
+
)
|
69 |
+
elif scheduler_name.lower() == 'constant':
|
70 |
+
from transformers import get_scheduler
|
71 |
+
lr_scheduler = get_scheduler(
|
72 |
+
name=scheduler_name.lower(),
|
73 |
+
optimizer=optimizer,
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
raise NotImplementedError
|
77 |
+
|
78 |
+
return lr_scheduler
|
79 |
+
|
80 |
+
|
81 |
+
def extra_stats(args, model, optimizer):
|
82 |
+
stats = {}
|
83 |
+
|
84 |
+
if args.logging.weights_l2:
|
85 |
+
weights_l2 = sum(p.detach().norm(2).item()**2 for p in model.parameters())**0.5
|
86 |
+
stats['weights_l2'] = weights_l2
|
87 |
+
|
88 |
+
cur_lr = optimizer.param_groups[0]['lr']
|
89 |
+
stats['lr'] = cur_lr
|
90 |
+
|
91 |
+
return stats
|
model/optimizers.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" optimizers.py
|
2 |
+
|
3 |
+
Code based on nanoT5 project:
|
4 |
+
https://github.com/PiotrNawrot/nanoT5/blob/main/nanoT5/utils/copied_utils.py
|
5 |
+
|
6 |
+
+ D-adapt Adam from https://github.com/facebookresearch/dadaptation
|
7 |
+
"""
|
8 |
+
import importlib
|
9 |
+
import math
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from typing import Iterable, Tuple
|
13 |
+
from torch import nn
|
14 |
+
from torch.optim import Optimizer
|
15 |
+
from transformers import Adafactor
|
16 |
+
from torch.optim import AdamW
|
17 |
+
|
18 |
+
|
19 |
+
class AdamWScale(Optimizer):
|
20 |
+
"""
|
21 |
+
This AdamW implementation is copied from Huggingface.
|
22 |
+
We modified it with Adagrad scaling by rms of a weight tensor
|
23 |
+
|
24 |
+
Implements Adam algorithm with weight decay fix as introduced in [Decoupled Weight Decay
|
25 |
+
Regularization](https://arxiv.org/abs/1711.05101).
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
params (`Iterable[nn.parameter.Parameter]`):
|
29 |
+
Iterable of parameters to optimize or dictionaries defining parameter groups.
|
30 |
+
lr (`float`, *optional*, defaults to 1e-3):
|
31 |
+
The learning rate to use.
|
32 |
+
betas (`Tuple[float,float]`, *optional*, defaults to (0.9, 0.999)):
|
33 |
+
Adam's betas parameters (b1, b2).
|
34 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
35 |
+
Adam's epsilon for numerical stability.
|
36 |
+
weight_decay (`float`, *optional*, defaults to 0):
|
37 |
+
Decoupled weight decay to apply.
|
38 |
+
correct_bias (`bool`, *optional*, defaults to `True`):
|
39 |
+
Whether or not to correct bias in Adam (for instance, in Bert TF repository they use `False`).
|
40 |
+
no_deprecation_warning (`bool`, *optional*, defaults to `False`):
|
41 |
+
A flag used to disable the deprecation warning (set to `True` to disable the warning).
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
params: Iterable[nn.parameter.Parameter],
|
47 |
+
lr: float = 1e-3,
|
48 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
49 |
+
eps: float = 1e-6,
|
50 |
+
weight_decay: float = 0.0,
|
51 |
+
correct_bias: bool = True,
|
52 |
+
):
|
53 |
+
if lr < 0.0:
|
54 |
+
raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0")
|
55 |
+
if not 0.0 <= betas[0] < 1.0:
|
56 |
+
raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
|
57 |
+
if not 0.0 <= betas[1] < 1.0:
|
58 |
+
raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
|
59 |
+
if not 0.0 <= eps:
|
60 |
+
raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0")
|
61 |
+
defaults = dict(
|
62 |
+
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
|
63 |
+
super().__init__(params, defaults)
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def _rms(tensor):
|
67 |
+
return tensor.norm(2) / (tensor.numel()**0.5)
|
68 |
+
|
69 |
+
def step(self, closure=None):
|
70 |
+
"""
|
71 |
+
Performs a single optimization step.
|
72 |
+
|
73 |
+
Arguments:
|
74 |
+
closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
|
75 |
+
"""
|
76 |
+
loss = None
|
77 |
+
if closure is not None:
|
78 |
+
loss = closure()
|
79 |
+
|
80 |
+
for group in self.param_groups:
|
81 |
+
for p in group["params"]:
|
82 |
+
if p.grad is None:
|
83 |
+
continue
|
84 |
+
grad = p.grad.data
|
85 |
+
if grad.is_sparse:
|
86 |
+
raise RuntimeError(
|
87 |
+
"Adam does not support sparse gradients, please consider SparseAdam instead"
|
88 |
+
)
|
89 |
+
|
90 |
+
state = self.state[p]
|
91 |
+
beta1, beta2 = group["betas"]
|
92 |
+
|
93 |
+
# State initialization
|
94 |
+
if len(state) == 0:
|
95 |
+
state["step"] = 0
|
96 |
+
# Exponential moving average of gradient values
|
97 |
+
state["exp_avg"] = torch.zeros_like(p.data)
|
98 |
+
# Exponential moving average of squared gradient values
|
99 |
+
state["exp_avg_sq"] = torch.zeros_like(p.data)
|
100 |
+
|
101 |
+
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
102 |
+
|
103 |
+
state["step"] += 1
|
104 |
+
|
105 |
+
# Decay the first and second moment running average coefficient
|
106 |
+
# In-place operations to update the averages at the same time
|
107 |
+
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
|
108 |
+
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
|
109 |
+
denom = exp_avg_sq.sqrt().add_(group["eps"])
|
110 |
+
|
111 |
+
step_size = group["lr"]
|
112 |
+
if group["correct_bias"]: # No bias correction for Bert
|
113 |
+
bias_correction1 = 1.0 - beta1**state["step"]
|
114 |
+
bias_correction2 = 1.0 - beta2**state["step"]
|
115 |
+
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
|
116 |
+
|
117 |
+
# /Adapt Step from Adagrad
|
118 |
+
step_size = step_size * max(1e-3, self._rms(p.data))
|
119 |
+
# /Adapt Step from Adagrad
|
120 |
+
|
121 |
+
p.data.addcdiv_(exp_avg, denom, value=-step_size)
|
122 |
+
|
123 |
+
# Just adding the square of the weights to the loss function is *not*
|
124 |
+
# the correct way of using L2 regularization/weight decay with Adam,
|
125 |
+
# since that will interact with the m and v parameters in strange ways.
|
126 |
+
#
|
127 |
+
# Instead we want to decay the weights in a manner that doesn't interact
|
128 |
+
# with the m/v parameters. This is equivalent to adding the square
|
129 |
+
# of the weights to the loss with plain (non-momentum) SGD.
|
130 |
+
# Add weight decay at the end (fixed version)
|
131 |
+
if group["weight_decay"] > 0.0:
|
132 |
+
p.data.add_(p.data, alpha=(-group["lr"] * group["weight_decay"]))
|
133 |
+
|
134 |
+
return loss
|
135 |
+
|
136 |
+
|
137 |
+
# def get_optimizer(models_dict: nn.ModuleDict,
|
138 |
+
# optimizer_name: str,
|
139 |
+
# base_lr: float,
|
140 |
+
# weight_decay: float = 0.):
|
141 |
+
|
142 |
+
# no_decay = [
|
143 |
+
# "bias", "LayerNorm", "layernorm", "layer_norm", "ln", "BatchNorm", "bn", "batch_norm",
|
144 |
+
# "batchnorm"
|
145 |
+
# ]
|
146 |
+
|
147 |
+
|
148 |
+
# optimizer_grouped_parameters = []
|
149 |
+
# for name, current_model in models_dict.items():
|
150 |
+
# if current_model is None:
|
151 |
+
# continue
|
152 |
+
# optimizer_grouped_parameters += [
|
153 |
+
# {
|
154 |
+
# "params": [
|
155 |
+
# p for n, p in current_model.named_parameters()
|
156 |
+
# if not any(nd in n for nd in no_decay)
|
157 |
+
# ],
|
158 |
+
# "weight_decay": weight_decay,
|
159 |
+
# },
|
160 |
+
# {
|
161 |
+
# "params": [
|
162 |
+
# p for n, p in current_model.named_parameters()
|
163 |
+
# if any(nd in n for nd in no_decay)
|
164 |
+
# ],
|
165 |
+
# "weight_decay": 0.0,
|
166 |
+
# },
|
167 |
+
# ]
|
168 |
+
def get_optimizer(models_dict: nn.ModuleDict,
|
169 |
+
optimizer_name: str,
|
170 |
+
base_lr: float,
|
171 |
+
weight_decay: float = 0.):
|
172 |
+
|
173 |
+
no_decay = [
|
174 |
+
"bias", "LayerNorm", "layernorm", "layer_norm", "ln", "BatchNorm", "bn", "batch_norm",
|
175 |
+
"batchnorm"
|
176 |
+
]
|
177 |
+
optimizer_grouped_parameters = []
|
178 |
+
for n, p in models_dict:
|
179 |
+
# drop pitch shifter
|
180 |
+
if 'pshifters' in n:
|
181 |
+
continue
|
182 |
+
# no decay
|
183 |
+
if n in no_decay:
|
184 |
+
optimizer_grouped_parameters.append({"params": [p], "weight_decay": 0.0})
|
185 |
+
else:
|
186 |
+
optimizer_grouped_parameters.append({"params": [p], "weight_decay": weight_decay})
|
187 |
+
|
188 |
+
if optimizer_name.lower() == 'adamw':
|
189 |
+
base_lr = 1e-03 if base_lr == None else float(base_lr)
|
190 |
+
opt = AdamW(optimizer_grouped_parameters, lr=base_lr)
|
191 |
+
elif optimizer_name.lower() == 'adafactor':
|
192 |
+
if base_lr == None:
|
193 |
+
opt = Adafactor(
|
194 |
+
optimizer_grouped_parameters,
|
195 |
+
lr=None,
|
196 |
+
scale_parameter=True,
|
197 |
+
relative_step=True,
|
198 |
+
warmup_init=True)
|
199 |
+
else:
|
200 |
+
opt = Adafactor(optimizer_grouped_parameters, lr=base_lr, relative_step=False)
|
201 |
+
elif optimizer_name.lower() == 'adamwscale':
|
202 |
+
base_lr = 1e-02 if base_lr == None else float(base_lr)
|
203 |
+
opt = AdamWScale(
|
204 |
+
optimizer_grouped_parameters,
|
205 |
+
lr=base_lr,
|
206 |
+
)
|
207 |
+
elif optimizer_name.lower() == 'cpuadam':
|
208 |
+
dspd = importlib.import_module('deepspeed')
|
209 |
+
base_lr = 1e-03 if base_lr == None else float(base_lr)
|
210 |
+
opt = dspd.ops.adam.cpu_adam.DeepSpeedCPUAdam(optimizer_grouped_parameters, lr=base_lr)
|
211 |
+
elif optimizer_name.lower() == 'dadaptadam':
|
212 |
+
dadaptation = importlib.import_module('dadaptation')
|
213 |
+
base_lr = 1.0 if base_lr == None else float(base_lr)
|
214 |
+
opt = dadaptation.DAdaptAdam(optimizer_grouped_parameters, lr=base_lr)
|
215 |
+
else:
|
216 |
+
raise NotImplementedError(optimizer_name)
|
217 |
+
|
218 |
+
return opt, base_lr
|
model/pitchshift_layer.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""pitchshift.py"""
|
11 |
+
# import math
|
12 |
+
import numpy as np
|
13 |
+
# from scipy import special
|
14 |
+
from einops import rearrange
|
15 |
+
from typing import Optional, Literal, Dict, List, Tuple, Callable
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
import torchaudio
|
20 |
+
from torchaudio import transforms
|
21 |
+
# from torchaudio import functional as F
|
22 |
+
# from torchaudio.functional.functional import (
|
23 |
+
# _fix_waveform_shape,
|
24 |
+
# _stretch_waveform,
|
25 |
+
# )
|
26 |
+
# from model.ops import adjust_b_to_gcd, check_all_elements_equal
|
27 |
+
|
28 |
+
|
29 |
+
class PitchShiftLayer(nn.Module):
|
30 |
+
"""Applying batch-wise pitch-shift to time-domain audio signals.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
pshift_range (List[int]): Range of pitch shift in semitones. Default: ``[-2, 2]``.
|
34 |
+
resample_source_fs (int): Default is 4000.
|
35 |
+
stretch_n_fft (int): Default is 2048.
|
36 |
+
window: (Optional[Literal['kaiser']]) Default is None.
|
37 |
+
beta: (Optional[float]): Parameter for 'kaiser' filter. Default: None.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
pshift_range: List[int] = [-2, 2],
|
43 |
+
resample_source_fs: int = 4000,
|
44 |
+
strecth_n_fft: int = 512,
|
45 |
+
win_length: Optional[int] = None,
|
46 |
+
hop_length: Optional[int] = None,
|
47 |
+
window: Optional[Literal['kaiser']] = None,
|
48 |
+
beta: Optional[float] = None,
|
49 |
+
expected_input_shape: Optional[Tuple[int]] = None,
|
50 |
+
device: Optional[torch.device] = None,
|
51 |
+
**kwargs,
|
52 |
+
) -> None:
|
53 |
+
super().__init__()
|
54 |
+
self.pshift_range = pshift_range
|
55 |
+
self.resample_source_fs = resample_source_fs
|
56 |
+
self.strecth_n_fft = strecth_n_fft
|
57 |
+
self.win_length = win_length
|
58 |
+
self.hop_length = hop_length
|
59 |
+
|
60 |
+
if window is None:
|
61 |
+
self.window_fn = torch.hann_window
|
62 |
+
self.window_kwargs = None
|
63 |
+
elif 'kaiser' in window:
|
64 |
+
|
65 |
+
def custom_kaiser_window(window_length, beta, **kwargs):
|
66 |
+
return torch.kaiser_window(window_length, periodic=True, beta=beta, **kwargs)
|
67 |
+
|
68 |
+
self.window_fn = custom_kaiser_window
|
69 |
+
self.window_kwargs = {'beta': beta}
|
70 |
+
|
71 |
+
# Initialize pitch shifters for every semitone
|
72 |
+
self.pshifters = None
|
73 |
+
self.frame_gaps = None
|
74 |
+
self._initialize_pshifters(expected_input_shape, device=device)
|
75 |
+
self.requires_grad_(False)
|
76 |
+
|
77 |
+
def _initialize_pshifters(self,
|
78 |
+
expected_input_shape: Optional[Tuple[int]] = None,
|
79 |
+
device: Optional[torch.device] = None) -> None:
|
80 |
+
# DDP requires initializing parameters with a dummy input
|
81 |
+
if expected_input_shape is not None:
|
82 |
+
if device is not None:
|
83 |
+
dummy_input = torch.randn(expected_input_shape, requires_grad=False).to(device)
|
84 |
+
else:
|
85 |
+
dummy_input = torch.randn(expected_input_shape, requires_grad=False)
|
86 |
+
else:
|
87 |
+
dummy_input = None
|
88 |
+
|
89 |
+
pshifters = nn.ModuleDict()
|
90 |
+
for semitone in range(self.pshift_range[0], self.pshift_range[1] + 1):
|
91 |
+
if semitone == 0:
|
92 |
+
# No need to shift and resample
|
93 |
+
pshifters[str(semitone)] = None
|
94 |
+
else:
|
95 |
+
pshifter = transforms.PitchShift(self.resample_source_fs,
|
96 |
+
n_steps=semitone,
|
97 |
+
n_fft=self.strecth_n_fft,
|
98 |
+
win_length=self.win_length,
|
99 |
+
hop_length=self.hop_length,
|
100 |
+
window_fn=self.window_fn,
|
101 |
+
wkwargs=self.window_kwargs)
|
102 |
+
pshifters[str(semitone)] = pshifter
|
103 |
+
# Pass dummy input to initialize parameters
|
104 |
+
with torch.no_grad():
|
105 |
+
if dummy_input is not None:
|
106 |
+
_ = pshifter.initialize_parameters(dummy_input)
|
107 |
+
self.pshifters = pshifters
|
108 |
+
|
109 |
+
def calculate_frame_gaps(self) -> Dict[int, float]:
|
110 |
+
"""Calculate the expected gap between the original and the stretched audio."""
|
111 |
+
frame_gaps = {} # for debugging
|
112 |
+
for semitone in range(self.pshift_range[0], self.pshift_range[1] + 1):
|
113 |
+
if semitone == 0:
|
114 |
+
# No need to shift and resample
|
115 |
+
frame_gaps[semitone] = 0.
|
116 |
+
else:
|
117 |
+
pshifter = self.pshifters[str(semitone)]
|
118 |
+
gap_in_ms = 1000. * (pshifter.kernel.shape[2] -
|
119 |
+
pshifter.kernel.shape[0] / 2.0**(-float(semitone) / 12)) / self.resample_source_fs
|
120 |
+
frame_gaps[semitone] = gap_in_ms
|
121 |
+
return frame_gaps
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def forward(self, x: torch.Tensor, semitone: int) -> torch.Tensor:
|
125 |
+
"""
|
126 |
+
Args:
|
127 |
+
x (torch.Tensor): (B, 1, T) or (B, T)
|
128 |
+
Returns:
|
129 |
+
torch.Tensor: (B, 1, T) or (B, T)
|
130 |
+
"""
|
131 |
+
if semitone == 0:
|
132 |
+
return x
|
133 |
+
elif semitone >= min(self.pshift_range) and semitone <= max(self.pshift_range):
|
134 |
+
return self.pshifters[str(semitone)](x)
|
135 |
+
else:
|
136 |
+
raise ValueError(f"semitone must be in range {self.pshift_range}")
|
137 |
+
|
138 |
+
|
139 |
+
def test_resampler_sinewave():
|
140 |
+
# x: {440Hz, 220Hz} sine wave at 16kHz
|
141 |
+
t = torch.arange(0, 2, 1 / 16000) # 2 seconds at 16kHz
|
142 |
+
x0 = torch.sin(2 * torch.pi * 440 * t) * 0.5
|
143 |
+
x1 = torch.sin(2 * torch.pi * 220 * t) * 0.5
|
144 |
+
x = torch.stack((x0, x1), dim=0) # (2, 32000)
|
145 |
+
|
146 |
+
# Resample
|
147 |
+
psl = PitchShiftLayer(pshift_range=[-2, 2], resample_source_fs=4000)
|
148 |
+
y = psl(x, 2) # (2, 24000)
|
149 |
+
|
150 |
+
# Export to wav
|
151 |
+
torchaudio.save("x.wav", x, 16000, bits_per_sample=16)
|
152 |
+
torchaudio.save("y.wav", y, 12000, bits_per_sample=16)
|
153 |
+
|
154 |
+
|
155 |
+
# class Resampler(nn.Module):
|
156 |
+
# """
|
157 |
+
# Resampling using conv1d operations, more memory-efficient than torchaudio's resampler.
|
158 |
+
|
159 |
+
# Based on Dan Povey's resampler.py:
|
160 |
+
# https://github.com/danpovey/filtering/blob/master/lilfilter/resampler.py
|
161 |
+
# """
|
162 |
+
|
163 |
+
# def __init__(self,
|
164 |
+
# input_sr: int,
|
165 |
+
# output_sr: int,
|
166 |
+
# dtype: torch.dtype = torch.float32,
|
167 |
+
# filter_width: int = 16,
|
168 |
+
# cutoff_ratio: float = 0.85,
|
169 |
+
# filter: Literal['kaiser', 'kaiser_best', 'kaiser_fast', 'hann'] = 'kaiser_fast',
|
170 |
+
# beta: float = 8.555504641634386) -> None:
|
171 |
+
# super().__init__() # init the base class
|
172 |
+
# """
|
173 |
+
# Initialize the Resampler.
|
174 |
+
|
175 |
+
# Args:
|
176 |
+
# - input_sr (int): Input sampling rate.
|
177 |
+
# - output_sr (int): Output sampling rate.
|
178 |
+
# - dtype (torch.dtype): Computation data type. Default: torch.float32.
|
179 |
+
# - filter_width (int): Number of zeros per side in the sinc function. Default: 16.
|
180 |
+
# - cutoff_ratio (float): Filter rolloff point as a fraction of Nyquist freq. Default: 0.95.
|
181 |
+
# - filter (str): Filter type. One of ['kaiser', 'kaiser_best', 'kaiser_fast', 'hann']. Default: 'kaiser_fast'.
|
182 |
+
# - beta (float): Parameter for 'kaiser' filter. Default: 8.555504641634386.
|
183 |
+
|
184 |
+
# Note: Ratio between input_sr and output_sr should be reduced to simplest form.
|
185 |
+
# """
|
186 |
+
# assert isinstance(input_sr, int) and isinstance(output_sr, int)
|
187 |
+
# if input_sr == output_sr:
|
188 |
+
# self.resample_type = 'trivial'
|
189 |
+
# return
|
190 |
+
|
191 |
+
# d = math.gcd(input_sr, output_sr)
|
192 |
+
# input_sr, output_sr = input_sr // d, output_sr // d
|
193 |
+
|
194 |
+
# assert dtype in [torch.float32, torch.float64]
|
195 |
+
# assert filter_width > 3 # a reasonable bare minimum
|
196 |
+
# np_dtype = np.float32 if dtype == torch.float32 else np.float64
|
197 |
+
|
198 |
+
# assert filter in ['hann', 'kaiser', 'kaiser_best', 'kaiser_fast']
|
199 |
+
|
200 |
+
# if filter == 'kaiser_best':
|
201 |
+
# filter_width = 64
|
202 |
+
# beta = 14.769656459379492
|
203 |
+
# cutoff_ratio = 0.9475937167399596
|
204 |
+
# filter = 'kaiser'
|
205 |
+
# elif filter == 'kaiser_fast':
|
206 |
+
# filter_width = 16
|
207 |
+
# beta = 8.555504641634386
|
208 |
+
# cutoff_ratio = 0.85
|
209 |
+
# filter = 'kaiser'
|
210 |
+
# """
|
211 |
+
# - Define a sample 'block' correlating `input_sr` input samples to `output_sr` output samples.
|
212 |
+
# - Dividing samples into these blocks allows corresponding block alignment.
|
213 |
+
# - On average, `zeros_per_block` zeros per block are present in the sinc function.
|
214 |
+
# """
|
215 |
+
# zeros_per_block = min(input_sr, output_sr) * cutoff_ratio
|
216 |
+
# """
|
217 |
+
# - Define conv kernel size n = (blocks_per_side*2 + 1), adding blocks to each side of the center.
|
218 |
+
# - `blocks_per_side` blocks as window radius ensures each central block sample accesses its window.
|
219 |
+
# - `blocks_per_side` is determined, rounding up if needed, as 1 + int(filter_width / zeros_per_block).
|
220 |
+
# """
|
221 |
+
# blocks_per_side = int(np.ceil(filter_width / zeros_per_block))
|
222 |
+
|
223 |
+
# kernel_width = 2 * blocks_per_side + 1
|
224 |
+
|
225 |
+
# # Shape of conv1d weights: (out_channels, in_channels, kernel_width)
|
226 |
+
# """ Time computations are in units of 1 block, aligning with the `canonical` time axis,
|
227 |
+
# since each block has input_sr input samples, adhering to our time unit."""
|
228 |
+
|
229 |
+
# window_radius_in_blocks = blocks_per_side
|
230 |
+
# """`times` will be sinc function arguments, expanding to shape (output_sr, input_sr, kernel_width)
|
231 |
+
# via broadcasting. Ensuring t == 0 along the central block diagonal (when input_sr == output_sr)"""
|
232 |
+
# times = (
|
233 |
+
# np.arange(output_sr, dtype=np_dtype).reshape(
|
234 |
+
# (output_sr, 1, 1)) / output_sr - np.arange(input_sr, dtype=np_dtype).reshape(
|
235 |
+
# (1, input_sr, 1)) / input_sr - (np.arange(kernel_width, dtype=np_dtype).reshape(
|
236 |
+
# (1, 1, kernel_width)) - blocks_per_side))
|
237 |
+
|
238 |
+
# def hann_window(a):
|
239 |
+
# """
|
240 |
+
# returning 0.5 + 0.5 cos(a*pi) on [-1,1] and 0 outside.
|
241 |
+
# """
|
242 |
+
# return np.heaviside(1 - np.abs(a), 0.0) * (0.5 + 0.5 * np.cos(a * np.pi))
|
243 |
+
|
244 |
+
# def kaiser_window(a, beta):
|
245 |
+
# w = special.i0(beta * np.sqrt(np.clip(1 - (
|
246 |
+
# (a - 0.0) / 1.0)**2.0, 0.0, 1.0))) / special.i0(beta)
|
247 |
+
# return np.heaviside(1 - np.abs(a), 0.0) * w
|
248 |
+
|
249 |
+
# """The weights are computed as a sinc function times a Hann-window function, normalized by
|
250 |
+
# `zeros_per_block` (sinc) and `input_sr` (input function) to maintain integral and magnitude."""
|
251 |
+
# if filter == 'hann':
|
252 |
+
# weights = (
|
253 |
+
# np.sinc(times * zeros_per_block) * hann_window(times / window_radius_in_blocks) *
|
254 |
+
# zeros_per_block / input_sr)
|
255 |
+
# else:
|
256 |
+
# weights = (
|
257 |
+
# np.sinc(times * zeros_per_block) *
|
258 |
+
# kaiser_window(times / window_radius_in_blocks, beta) * zeros_per_block / input_sr)
|
259 |
+
|
260 |
+
# self.input_sr = input_sr
|
261 |
+
# self.output_sr = output_sr
|
262 |
+
# """If output_sr == 1, merge input_sr into kernel_width for weights (shape: output_sr, input_sr,
|
263 |
+
# kernel_width) to optimize convolution speed and avoid extra reshaping."""
|
264 |
+
|
265 |
+
# assert weights.shape == (output_sr, input_sr, kernel_width)
|
266 |
+
# if output_sr == 1:
|
267 |
+
# self.resample_type = 'integer_downsample'
|
268 |
+
# self.padding = input_sr * blocks_per_side
|
269 |
+
# weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
|
270 |
+
# weights = weights.transpose(1, 2).contiguous().view(1, 1, input_sr * kernel_width)
|
271 |
+
|
272 |
+
# elif input_sr == 1:
|
273 |
+
# # For conv_transpose, use weights as if input_sr and output_sr were swapped, simulating downsampling.
|
274 |
+
# self.resample_type = 'integer_upsample'
|
275 |
+
# self.padding = output_sr * blocks_per_side
|
276 |
+
# weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
|
277 |
+
# weights = weights.flip(2).transpose(0,
|
278 |
+
# 2).contiguous().view(1, 1, output_sr * kernel_width)
|
279 |
+
# else:
|
280 |
+
# self.resample_type = 'general'
|
281 |
+
# self.reshaped = False
|
282 |
+
# self.padding = blocks_per_side
|
283 |
+
# weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
|
284 |
+
|
285 |
+
# self.weights = torch.nn.Parameter(weights, requires_grad=False)
|
286 |
+
|
287 |
+
# @torch.no_grad()
|
288 |
+
# def forward(self, x: torch.Tensor) -> torch.Tensor:
|
289 |
+
# """
|
290 |
+
# Parameters:
|
291 |
+
# - x: torch.Tensor, with shape (minibatch_size, sequence_length), dtype should match the instance's dtype.
|
292 |
+
|
293 |
+
# Returns:
|
294 |
+
# - A torch.Tensor with shape (minibatch_size, (sequence_length//input_sr)*output_sr), dtype matching the input,
|
295 |
+
# and content resampled.
|
296 |
+
# """
|
297 |
+
# if self.resample_type == 'trivial':
|
298 |
+
# return x
|
299 |
+
# elif self.resample_type == 'integer_downsample':
|
300 |
+
# (minibatch_size, seq_len) = x.shape # (B, in_C, L) with in_C == 1
|
301 |
+
# x = x.unsqueeze(1)
|
302 |
+
# x = torch.nn.functional.conv1d(
|
303 |
+
# x, self.weights, stride=self.input_sr, padding=self.padding) # (B, out_C, L)
|
304 |
+
# return x.squeeze(1) # (B, L)
|
305 |
+
|
306 |
+
# elif self.resample_type == 'integer_upsample':
|
307 |
+
# x = x.unsqueeze(1)
|
308 |
+
# x = torch.nn.functional.conv_transpose1d(
|
309 |
+
# x, self.weights, stride=self.output_sr, padding=self.padding)
|
310 |
+
|
311 |
+
# return x.squeeze(1)
|
312 |
+
# else:
|
313 |
+
# assert self.resample_type == 'general'
|
314 |
+
# (minibatch_size, seq_len) = x.shape
|
315 |
+
# num_blocks = seq_len // self.input_sr
|
316 |
+
# if num_blocks == 0:
|
317 |
+
# # TODO: pad with zeros.
|
318 |
+
# raise RuntimeError("Signal is too short to resample")
|
319 |
+
# # Truncate input
|
320 |
+
# x = x[:, 0:(num_blocks * self.input_sr)].view(minibatch_size, num_blocks, self.input_sr)
|
321 |
+
# x = x.transpose(1, 2) # (B, in_C, L)
|
322 |
+
# x = torch.nn.functional.conv1d(
|
323 |
+
# x, self.weights, padding=self.padding) # (B, out_C, num_blocks)
|
324 |
+
# return x.transpose(1, 2).contiguous().view(minibatch_size, num_blocks * self.output_sr)
|
325 |
+
|
326 |
+
# def test_resampler_sinewave():
|
327 |
+
# import torchaudio
|
328 |
+
# # x: {440Hz, 220Hz} sine wave at 16kHz
|
329 |
+
# t = torch.arange(0, 2, 1 / 16000) # 2 seconds at 16kHz
|
330 |
+
# x0 = torch.sin(2 * torch.pi * 440 * t) * 0.5
|
331 |
+
# x1 = torch.sin(2 * torch.pi * 220 * t) * 0.5
|
332 |
+
# x = torch.stack((x0, x1), dim=0) # (2, 32000)
|
333 |
+
|
334 |
+
# # Resample
|
335 |
+
# resampler = Resampler(input_sr=16000, output_sr=12000)
|
336 |
+
# y = resampler(x) # (2, 24000)
|
337 |
+
|
338 |
+
# # Export to wav
|
339 |
+
# torchaudio.save("x.wav", x, 16000, bits_per_sample=16)
|
340 |
+
# torchaudio.save("y.wav", y, 12000, bits_per_sample=16)
|
341 |
+
|
342 |
+
# def test_resampler_music():
|
343 |
+
# import torchaudio
|
344 |
+
# # x: music at 16kHz
|
345 |
+
# x, _ = torchaudio.load("music.wav")
|
346 |
+
# slice_length = 32000
|
347 |
+
# n_slices = 80
|
348 |
+
# slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
|
349 |
+
# x = torch.stack(slices) # (80, 32000)
|
350 |
+
|
351 |
+
# # Resample
|
352 |
+
# filter_width = 32
|
353 |
+
# resampler = Resampler(16000, 12000, filter_width=filter_width)
|
354 |
+
# y = resampler(x) # (80, 24000)
|
355 |
+
# y = y.reshape(1, -1) # (1, 1920000)
|
356 |
+
# torchaudio.save(f"y_filter_width{filter_width}.wav", y, 12000, bits_per_sample=16)
|
357 |
+
|
358 |
+
# class PitchShiftLayer(nn.Module):
|
359 |
+
# """Applying batch-wise pitch-shift to time-domain audio signals.
|
360 |
+
|
361 |
+
# Args:
|
362 |
+
# expected_input_length (int): Expected input length. Default: ``32767``.
|
363 |
+
# pshift_range (List[int]): Range of pitch shift in semitones. Default: ``[-2, 2]``.
|
364 |
+
# min_gcd (int): Minimum GCD of input and output sampling rates for resampling. Setting high value can save GPU memory. Default: ``16``.
|
365 |
+
# max_timing_error (float): Maximum allowed timing error in seconds. Default: ``0.002``.
|
366 |
+
# fs (int): Sample rate of input waveform, x. Default: 16000.
|
367 |
+
# bins_per_octave (int, optional): The number of steps per octave (Default : ``12``).
|
368 |
+
# n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).
|
369 |
+
# win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).
|
370 |
+
# hop_length (int or None, optional): Length of hop between STFT windows. If None, then ``win_length // 4``
|
371 |
+
# is used (Default: ``None``).
|
372 |
+
# window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.
|
373 |
+
# If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).
|
374 |
+
|
375 |
+
# """
|
376 |
+
|
377 |
+
# def __init__(
|
378 |
+
# self,
|
379 |
+
# expected_input_length: int = 32767,
|
380 |
+
# pshift_range: List[int] = [-2, 2],
|
381 |
+
# min_gcd: int = 16,
|
382 |
+
# max_timing_error: float = 0.002,
|
383 |
+
# fs: int = 16000,
|
384 |
+
# bins_per_octave: int = 12,
|
385 |
+
# n_fft: int = 2048,
|
386 |
+
# win_length: Optional[int] = None,
|
387 |
+
# hop_length: Optional[int] = None,
|
388 |
+
# window: Optional[torch.Tensor] = None,
|
389 |
+
# filter_width: int = 16,
|
390 |
+
# filter: Literal['kaiser', 'kaiser_best', 'kaiser_fast', 'hann'] = 'kaiser_fast',
|
391 |
+
# cutoff_ratio: float = 0.85,
|
392 |
+
# beta: float = 8.555504641634386,
|
393 |
+
# **kwargs,
|
394 |
+
# ):
|
395 |
+
# super().__init__()
|
396 |
+
# self.expected_input_length = expected_input_length
|
397 |
+
# self.pshift_range = pshift_range
|
398 |
+
# self.min_gcd = min_gcd
|
399 |
+
# self.max_timing_error = max_timing_error
|
400 |
+
# self.fs = fs
|
401 |
+
# self.bins_per_octave = bins_per_octave
|
402 |
+
# self.n_fft = n_fft
|
403 |
+
# self.win_length = win_length
|
404 |
+
# self.hop_length = hop_length
|
405 |
+
# self.window = window
|
406 |
+
# self.resample_args = {
|
407 |
+
# "filter_width": filter_width,
|
408 |
+
# "filter": filter,
|
409 |
+
# "cutoff_ratio": cutoff_ratio,
|
410 |
+
# "beta": beta,
|
411 |
+
# }
|
412 |
+
|
413 |
+
# # Initialize Resamplers
|
414 |
+
# self._initialize_resamplers()
|
415 |
+
|
416 |
+
# def _initialize_resamplers(self):
|
417 |
+
# resamplers = nn.ModuleDict()
|
418 |
+
# self.frame_gaps = {} # for debugging
|
419 |
+
# for i in range(self.pshift_range[0], self.pshift_range[1] + 1):
|
420 |
+
# if i == 0:
|
421 |
+
# # No need to shift and resample
|
422 |
+
# resamplers[str(i)] = None
|
423 |
+
# else:
|
424 |
+
# # Find optimal reconversion frames meeting the min_gcd
|
425 |
+
# stretched_frames, recon_frames, gap = self._find_optimal_reconversion_frames(i)
|
426 |
+
# self.frame_gaps[i] = gap
|
427 |
+
# resamplers[str(i)] = Resampler(stretched_frames, recon_frames, **self.resample_args)
|
428 |
+
# self.resamplers = resamplers
|
429 |
+
|
430 |
+
# def _find_optimal_reconversion_frames(self, semitone: int):
|
431 |
+
# """
|
432 |
+
# Find the optimal reconversion frames for a given source sample rate, input length, and semitone for strech.
|
433 |
+
|
434 |
+
# Parameters:
|
435 |
+
# - sr (int): Input audio sample rate, which should be power of 2
|
436 |
+
# - n_step (int): The number of pitch-shift steps in semi-tone.
|
437 |
+
# - min_gcd (int): The minimum desired GCD, power of 2. Defaults to 16. 16 or 32 are good choices.
|
438 |
+
# - max_timing_error (float): The maximum allowed timing error, in seconds. Defaults to 5 ms
|
439 |
+
|
440 |
+
# Returns:
|
441 |
+
# - int: The optimal target sample rate
|
442 |
+
# """
|
443 |
+
# stretch_rate = 1 / 2.0**(-float(semitone) / self.bins_per_octave)
|
444 |
+
# stretched_frames = round(self.expected_input_length * stretch_rate)
|
445 |
+
|
446 |
+
# gcd = math.gcd(self.expected_input_length, stretched_frames)
|
447 |
+
# if gcd >= self.min_gcd:
|
448 |
+
# return stretched_frames, self.expected_input_length, 0
|
449 |
+
# else:
|
450 |
+
# reconversion_frames = adjust_b_to_gcd(stretched_frames, self.expected_input_length,
|
451 |
+
# self.min_gcd)
|
452 |
+
# gap = reconversion_frames - self.expected_input_length
|
453 |
+
# gap_sec = gap / self.fs
|
454 |
+
# if gap_sec > self.max_timing_error:
|
455 |
+
# # TODO: modifying vocoder of stretch_waveform to adjust pitch-shift rate in cents
|
456 |
+
# raise ValueError(
|
457 |
+
# gap_sec < self.max_timing_error,
|
458 |
+
# f"gap_sec={gap_sec} > max_timing_error={self.max_timing_error} with semitone={semitone}, stretched_frames={stretched_frames}, recon_frames={reconversion_frames}. Try adjusting input lenght or decreasing min_gcd."
|
459 |
+
# )
|
460 |
+
# else:
|
461 |
+
# return stretched_frames, reconversion_frames, gap_sec
|
462 |
+
|
463 |
+
# @torch.no_grad()
|
464 |
+
# def forward(self,
|
465 |
+
# x: torch.Tensor,
|
466 |
+
# semitone: int,
|
467 |
+
# resample: bool = True,
|
468 |
+
# fix_shape: bool = True) -> torch.Tensor:
|
469 |
+
# """
|
470 |
+
# Args:
|
471 |
+
# x (torch.Tensor): (B, 1, T)
|
472 |
+
# Returns:
|
473 |
+
# torch.Tensor: (B, 1, T)
|
474 |
+
# """
|
475 |
+
# if semitone == 0:
|
476 |
+
# return x
|
477 |
+
# elif semitone >= min(self.pshift_range) and semitone <= max(self.pshift_range):
|
478 |
+
# x = x.squeeze(1) # (B, T)
|
479 |
+
# original_x_size = x.size()
|
480 |
+
# x = _stretch_waveform(
|
481 |
+
# x,
|
482 |
+
# semitone,
|
483 |
+
# self.bins_per_octave,
|
484 |
+
# self.n_fft,
|
485 |
+
# self.win_length,
|
486 |
+
# self.hop_length,
|
487 |
+
# self.window,
|
488 |
+
# )
|
489 |
+
# if resample:
|
490 |
+
# x = self.resamplers[str(semitone)].forward(x)
|
491 |
+
# # Fix waveform shape
|
492 |
+
# if fix_shape:
|
493 |
+
# if x.size(1) != original_x_size[1]:
|
494 |
+
# # print(f"Warning: {x.size(1)} != {original_x_length}")
|
495 |
+
# x = _fix_waveform_shape(x, original_x_size)
|
496 |
+
# return x.unsqueeze(1) # (B, 1, T)
|
497 |
+
# else:
|
498 |
+
# raise ValueError(f"semitone must be in range {self.pshift_range}")
|
499 |
+
|
500 |
+
# def test_pitchshift_layer():
|
501 |
+
# import torchaudio
|
502 |
+
# # music
|
503 |
+
# # x, _ = torchaudio.load("music.wav")
|
504 |
+
# # slice_length = 32767
|
505 |
+
# # n_slices = 80
|
506 |
+
# # slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
|
507 |
+
# # x = torch.stack(slices).unsqueeze(1) # (80, 1, 32767)
|
508 |
+
|
509 |
+
# # sine wave
|
510 |
+
# t = torch.arange(0, 2.0479, 1 / 16000) # 2.05 seconds at 16kHz
|
511 |
+
# x = torch.sin(2 * torch.pi * 440 * t) * 0.5
|
512 |
+
# x = x.reshape(1, 1, 32767).tile(80, 1, 1)
|
513 |
+
|
514 |
+
# # Resample
|
515 |
+
# pos = 0
|
516 |
+
# ps = PitchShiftLayer(
|
517 |
+
# pshift_range=[-3, 4],
|
518 |
+
# expected_input_length=32767,
|
519 |
+
# fs=16000,
|
520 |
+
# min_gcd=16,
|
521 |
+
# max_timing_error=0.002,
|
522 |
+
# # filter_width=64,
|
523 |
+
# filter='kaiser_fast',
|
524 |
+
# n_fft=2048)
|
525 |
+
# y = []
|
526 |
+
# for i in range(-3, 4):
|
527 |
+
# y.append(ps(x[[pos], :, :], i, resample=False, fix_shape=False)[0, 0, :])
|
528 |
+
# y = torch.cat(y).unsqueeze(0) # (1, 32767 * 7)
|
529 |
+
# torchaudio.save("y_2048_kaiser_fast.wav", y, 16000, bits_per_sample=16)
|
530 |
+
|
531 |
+
# # TorchAudio PitchShifter fopr comparision
|
532 |
+
# y_ta = []
|
533 |
+
# for i in range(-3, 4):
|
534 |
+
# ta_transform = torchaudio.transforms.PitchShift(16000, n_steps=i)
|
535 |
+
# y_ta.append(ta_transform(x[[pos], :, :])[0, 0, :])
|
536 |
+
# y_ta = torch.cat(y_ta).unsqueeze(0) # (1, 32767 * 7)
|
537 |
+
# torchaudio.save("y_ta.wav", y_ta, 16000, bits_per_sample=16)
|
538 |
+
|
539 |
+
# def test_min_gcd_mem_usage():
|
540 |
+
# min_gcd = 16
|
541 |
+
# for i in range(-3, 4):
|
542 |
+
# stretched_frames = _stretch_waveform(x, i).shape[1]
|
543 |
+
# adjusted = adjust_b_to_gcd(stretched_frames, 32767, min_gcd)
|
544 |
+
# gcd_val = math.gcd(adjusted, stretched_frames)
|
545 |
+
# gap = adjusted - 32767
|
546 |
+
# gap_ms = (gap / 16000) * 1000
|
547 |
+
# mem_mb = (stretched_frames / gcd_val) * (adjusted / gcd_val) * 3 * 4 / 1000 / 1000
|
548 |
+
# print(f'\033[92mmin_gcd={min_gcd}\033[0m', f'ps={i}', f'frames={stretched_frames}',
|
549 |
+
# f'adjusted_frames={adjusted}', f'gap={gap}', f'\033[91mgap_ms={gap_ms}\033[0m',
|
550 |
+
# f'gcd={gcd_val}', f'mem_MB={mem_mb}')
|
model/positional_encoding.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""positional_encoding.py """
|
2 |
+
from typing import Optional, Literal
|
3 |
+
from inspect import isfunction
|
4 |
+
from math import log, log2, pi, floor
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn, einsum
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
|
12 |
+
from model.RoPE.RoPE import RotaryEmbedding
|
13 |
+
|
14 |
+
|
15 |
+
class AlibiPositionalBias(nn.Module):
|
16 |
+
"""
|
17 |
+
Alibi Positional Bias for Transformer Attention
|
18 |
+
: modified to support trainalbe slope similar to "little bird" paper, based on
|
19 |
+
https://github.com/lucidrains/x-transformers/
|
20 |
+
https://github.com/ofirpress/attention_with_linear_biases/issues/5
|
21 |
+
|
22 |
+
This is Alibi positional bias extension for:
|
23 |
+
- bi-directional self/cross attention
|
24 |
+
- supporting extrapolation.
|
25 |
+
|
26 |
+
References:
|
27 |
+
Ofir, Noah A. Smith, and Mike Lewis. "Train short, test long: Attention with linear
|
28 |
+
biases enables input length extrapolation." arXiv preprint arXiv:2108.12409 (2021).
|
29 |
+
|
30 |
+
Lee, Minchul, Kijong Han, and Myeong Cheol Shin. "LittleBird: Efficient Faster & Longer
|
31 |
+
Transformer for Question Answering." arXiv preprint arXiv:2210.11870 (2022).
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self,
|
35 |
+
heads: int = 8,
|
36 |
+
total_heads: int = 8,
|
37 |
+
trainable_slope: bool = False,
|
38 |
+
trainable_slope_init: Literal['random', 'log'] = 'random',
|
39 |
+
**kwargs) -> None:
|
40 |
+
super().__init__()
|
41 |
+
self.heads = heads # number of heads to be activated
|
42 |
+
self.total_heads = total_heads # number of heads in attention module
|
43 |
+
self.trainable_slope = trainable_slope
|
44 |
+
self.trainable_slope_init = trainable_slope_init
|
45 |
+
|
46 |
+
if trainable_slope:
|
47 |
+
self.slopes = nn.Parameter(torch.Tensor(heads, 1, 1), requires_grad=True)
|
48 |
+
else:
|
49 |
+
slopes = torch.Tensor(self._get_slopes(heads))
|
50 |
+
slopes = rearrange(slopes, 'h -> h 1 1')
|
51 |
+
self.register_buffer('slopes', slopes, persistent=False)
|
52 |
+
|
53 |
+
self.register_buffer('bias', None, persistent=False)
|
54 |
+
|
55 |
+
def reset_parameters(self) -> None:
|
56 |
+
if self.trainable_slope:
|
57 |
+
if self.trainable_slope_init == 'random':
|
58 |
+
nn.init.normal_(self.slopes, -2, 1)
|
59 |
+
else:
|
60 |
+
raise NotImplementedError(f'Unknown trainable_slope_init: {self.trainable_slope_init}')
|
61 |
+
|
62 |
+
def get_bias(self, i, j, device):
|
63 |
+
i_arange = torch.arange(j - i, j, device=device)
|
64 |
+
j_arange = torch.arange(j, device=device)
|
65 |
+
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
|
66 |
+
return bias
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def _get_slopes(heads):
|
70 |
+
|
71 |
+
def get_slopes_power_of_2(n):
|
72 |
+
start = (2**(-2**-(log2(n) - 3)))
|
73 |
+
ratio = start
|
74 |
+
return [start * ratio**i for i in range(n)]
|
75 |
+
|
76 |
+
if log2(heads).is_integer():
|
77 |
+
return get_slopes_power_of_2(heads)
|
78 |
+
|
79 |
+
closest_power_of_2 = 2**floor(log2(heads))
|
80 |
+
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(
|
81 |
+
2 * closest_power_of_2)[0::2][:heads - closest_power_of_2]
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def pad_at_dim(t, pad, dim=-1, value=0.):
|
85 |
+
dims_from_right = (-dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
86 |
+
zeros = ((0, 0) * dims_from_right)
|
87 |
+
return F.pad(t, (*zeros, *pad), value=value)
|
88 |
+
|
89 |
+
@property
|
90 |
+
def device(self):
|
91 |
+
if self.trainable_slope:
|
92 |
+
return self.slopes.device
|
93 |
+
else:
|
94 |
+
return next(self.buffers()).device
|
95 |
+
|
96 |
+
def forward(self, i, j):
|
97 |
+
"""
|
98 |
+
Args:
|
99 |
+
i (int): end index of query
|
100 |
+
j (int): end index of key
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
torch.Tensor: (num_total_heads, i, j) positional bias for each head
|
104 |
+
|
105 |
+
Usage:
|
106 |
+
>>> alibi_bias = AlibiPositionalBias(heads=8, total_heads=8, trainable_slope=False)
|
107 |
+
>>> pos_bias = alibi_bias(len(q), len(k))
|
108 |
+
>>> q_dot_k = ...
|
109 |
+
>>> q_dot_k += pos_bias
|
110 |
+
>>> q_dot_k = q_dot_k.softmax(dim=-1)
|
111 |
+
|
112 |
+
"""
|
113 |
+
h, device = self.total_heads, self.device
|
114 |
+
if self.trainable_slope:
|
115 |
+
if self.bias is not None and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
|
116 |
+
bias = self.bias[..., :i, :j]
|
117 |
+
else:
|
118 |
+
bias = self.get_bias(i, j, device)
|
119 |
+
num_heads_unalibied = h - bias.shape[0]
|
120 |
+
bias = self.pad_at_dim(bias, (0, num_heads_unalibied), dim=0)
|
121 |
+
self.register_buffer('bias', bias, persistent=False)
|
122 |
+
|
123 |
+
return self.bias * torch.sigmoid(self.slopes)
|
124 |
+
|
125 |
+
else:
|
126 |
+
if self.bias is not None and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
|
127 |
+
return self.bias[..., :i, :j]
|
128 |
+
|
129 |
+
bias = self.get_bias(i, j, device)
|
130 |
+
bias = bias * self.slopes
|
131 |
+
|
132 |
+
num_heads_unalibied = h - bias.shape[0]
|
133 |
+
bias = self.pad_at_dim(bias, (0, num_heads_unalibied), dim=0)
|
134 |
+
self.register_buffer('bias', bias, persistent=False)
|
135 |
+
|
136 |
+
return self.bias
|
137 |
+
|
138 |
+
|
139 |
+
class FixedSinusoidalPositionalEmbedding(nn.Embedding):
|
140 |
+
"""
|
141 |
+
Sinusoidal Absolute Positional Embeddings (APE) of any length.
|
142 |
+
|
143 |
+
Adapted from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding
|
144 |
+
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
148 |
+
super().__init__(num_positions, embedding_dim)
|
149 |
+
self.weight = self._init_weight(self.weight)
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def _init_weight(out: nn.Parameter):
|
153 |
+
"""
|
154 |
+
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
|
155 |
+
the 2nd half of the vector. [dim // 2:]
|
156 |
+
"""
|
157 |
+
n_pos, dim = out.shape
|
158 |
+
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)
|
159 |
+
])
|
160 |
+
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
|
161 |
+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
|
162 |
+
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
163 |
+
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
164 |
+
out.detach_()
|
165 |
+
return out
|
166 |
+
|
167 |
+
@torch.no_grad()
|
168 |
+
def forward(self, seq_len: int, past_key_values_length: int = 0):
|
169 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
170 |
+
positions = torch.arange(past_key_values_length,
|
171 |
+
past_key_values_length + seq_len,
|
172 |
+
dtype=torch.long,
|
173 |
+
device=self.weight.device)
|
174 |
+
return super().forward(positions)
|
175 |
+
|
176 |
+
|
177 |
+
class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module):
|
178 |
+
"""Rotary positional embedding
|
179 |
+
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, config):
|
183 |
+
super().__init__()
|
184 |
+
dim = config.d_model // config.num_heads
|
185 |
+
base = config.rotary_embedding_base
|
186 |
+
|
187 |
+
inv_freq = 1.0 / (base**(torch.arange(0, dim, 2).float() / dim))
|
188 |
+
self.register_buffer("inv_freq", inv_freq)
|
189 |
+
self.cached_sequence_length = None
|
190 |
+
self.cached_rotary_positional_embedding = None
|
191 |
+
|
192 |
+
def forward(self, hidden_states):
|
193 |
+
sequence_length = hidden_states.shape[1]
|
194 |
+
|
195 |
+
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
|
196 |
+
return self.cached_rotary_positional_embedding
|
197 |
+
|
198 |
+
self.cached_sequence_length = sequence_length
|
199 |
+
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
|
200 |
+
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
|
201 |
+
embeddings = torch.cat((freqs, freqs), dim=-1)
|
202 |
+
|
203 |
+
cos_embeddings = embeddings.cos()[:, None, None, :]
|
204 |
+
sin_embeddings = embeddings.sin()[:, None, None, :]
|
205 |
+
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings])
|
206 |
+
return self.cached_rotary_positional_embedding
|
207 |
+
|
208 |
+
|
209 |
+
class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
|
210 |
+
"""Relative positional encoding module."""
|
211 |
+
|
212 |
+
def __init__(self, config):
|
213 |
+
super().__init__()
|
214 |
+
self.max_len = config.num_max_positions
|
215 |
+
self.d_model = config.d_model
|
216 |
+
self.pe = None
|
217 |
+
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
|
218 |
+
|
219 |
+
def extend_pe(self, x):
|
220 |
+
# Reset the positional encodings
|
221 |
+
if self.pe is not None:
|
222 |
+
# self.pe contains both positive and negative parts
|
223 |
+
# the length of self.pe is 2 * input_len - 1
|
224 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
225 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
226 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
227 |
+
return
|
228 |
+
# Suppose `i` is the position of query vector and `j` is the
|
229 |
+
# position of key vector. We use positive relative positions when keys
|
230 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
231 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
232 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
233 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
234 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(log(10000.0) / self.d_model))
|
235 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
236 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
237 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
238 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
239 |
+
|
240 |
+
# Reverse the order of positive indices and concat both positive and
|
241 |
+
# negative indices. This is used to support the shifting trick
|
242 |
+
# as in https://arxiv.org/abs/1901.02860
|
243 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
244 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
245 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
246 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
247 |
+
|
248 |
+
def forward(self, hidden_states: torch.Tensor):
|
249 |
+
self.extend_pe(hidden_states)
|
250 |
+
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
|
251 |
+
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
|
252 |
+
relative_position_embeddings = self.pe[:, start_idx:end_idx]
|
253 |
+
|
254 |
+
return relative_position_embeddings
|
255 |
+
|
256 |
+
|
257 |
+
#================================================================================================
|
258 |
+
# Rotary Positional Embedding
|
259 |
+
#================================================================================================
|
260 |
+
def get_rotary_emb(d_by_head: int,
|
261 |
+
freqs_for: Literal["l", "lang", "p", "pixel"],
|
262 |
+
partial_pe: bool = False,
|
263 |
+
learned_freq: bool = False):
|
264 |
+
if partial_pe is True:
|
265 |
+
rdim = d_by_head // 2
|
266 |
+
else:
|
267 |
+
rdim = d_by_head
|
268 |
+
|
269 |
+
if freqs_for in ["l", "lang"]:
|
270 |
+
freqs_for = "lang"
|
271 |
+
elif freqs_for in ["p", "pixel"]:
|
272 |
+
freqs_for = "pixel"
|
273 |
+
else:
|
274 |
+
raise ValueError(f"freqs_for must be 'l' or 'lang' or 'p' or 'pixel', but got {freqs_for}")
|
275 |
+
return RotaryEmbedding(dim=rdim, freqs_for=freqs_for, learned_freq=learned_freq)
|
276 |
+
|
277 |
+
|
278 |
+
def test_rotary_embedding_lang():
|
279 |
+
d = 128
|
280 |
+
num_heads = 8
|
281 |
+
d_by_head = d // num_heads
|
282 |
+
|
283 |
+
rotary = get_rotary_emb(d_by_head, freqs_for="lang", partial_pe=False, learned_freq=False)
|
284 |
+
q = torch.ones(1, 8, 110, d_by_head)
|
285 |
+
q = rotary.apply_rotary_custom(q)
|
286 |
+
|
287 |
+
import matplotlib.pyplot as plt
|
288 |
+
plt.imshow(q[0, 0, :, :].detach().numpy().T, origin='lower')
|
model/spectrogram.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""spectrogram.py"""
|
11 |
+
import importlib
|
12 |
+
from typing import Optional, Literal, Dict, Tuple
|
13 |
+
from packaging.version import parse as VersionParse
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from einops import rearrange
|
18 |
+
from model.ops import minmax_normalize
|
19 |
+
from config.config import audio_cfg as default_audio_cfg
|
20 |
+
"""
|
21 |
+
Example usage:
|
22 |
+
|
23 |
+
# MT3 setup
|
24 |
+
>>> hop = 8 ms or 128 samples
|
25 |
+
>>> melspec = Melspectrogram(sample_rate=16000, n_fft=2048, hop_length=128,
|
26 |
+
f_min=50, f_max=8000, n_mels=512)
|
27 |
+
>>> x = torch.randn(2, 1, 32767) # (B, C=1, T): 2.048 s
|
28 |
+
>>> y = melspec(x) # (2, 256, 512) (B, T, F)
|
29 |
+
|
30 |
+
# PerceiverTF-like setup
|
31 |
+
>>> hop = 18.75 ms or 300 samples
|
32 |
+
>>> spec = Spectrogram(n_fft=2048, hop_length=300)
|
33 |
+
)
|
34 |
+
>>> x = torch.randn(2, 1, 95999) # (B, C=1, T): 6.000 s
|
35 |
+
>>> y = spec(x) # (2, 320, 1024) (B, T, F)
|
36 |
+
|
37 |
+
# Hybrid setup (2.048 seconds segment and spectrogram with hop=300)
|
38 |
+
>>> hop = 18.75 ms or 300 samples
|
39 |
+
>>> spec = Spectrogram(n_fft=2048, hop_length=300)
|
40 |
+
>>> x = torch.randn(2, 1, 32767) # (B, C=1, T): 2.048 s
|
41 |
+
>>> y = spec(x) # (2, 110, 1024) (B, T, F)
|
42 |
+
|
43 |
+
# PerceiverTF-like setup, hop=256
|
44 |
+
>>> hop = 16 ms or 256 samples
|
45 |
+
>>> spec256 = Spectrogram(sample_rate=16000, n_fft=2048, hop_length=256,
|
46 |
+
f_min=20, f_max=8000, n_mels=256)
|
47 |
+
>>> x = torch.randn(2, 1, 32767) # (B, C=1, T): 2.048 s
|
48 |
+
>>> y = spec256(x) # (2, 128, 1024) (B, T, F)
|
49 |
+
"""
|
50 |
+
|
51 |
+
|
52 |
+
def optional_compiler_disable(func):
|
53 |
+
if VersionParse(torch.__version__) >= VersionParse("2.1"):
|
54 |
+
# If the version is 2.1 or higher, apply the torch.compiler.disable decorator.
|
55 |
+
return torch.compiler.disable(func)
|
56 |
+
else:
|
57 |
+
# If the version is below 2.1, return the original function.
|
58 |
+
return func
|
59 |
+
|
60 |
+
|
61 |
+
# -------------------------------------------------------------------------------------
|
62 |
+
# Log-Mel spectrogram
|
63 |
+
# -------------------------------------------------------------------------------------
|
64 |
+
class Melspectrogram(nn.Module):
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
audio_backend: Literal['torchaudio', 'nnaudio'] = 'torchaudio',
|
69 |
+
sample_rate: int = 16000,
|
70 |
+
n_fft: int = 2048,
|
71 |
+
hop_length: int = 128,
|
72 |
+
f_min: int = 50, # 20 Hz in the MT3 paper, but we can only use 20 Hz with nnAudio
|
73 |
+
f_max: Optional[int] = 8000,
|
74 |
+
n_mels: int = 512,
|
75 |
+
eps: float = 1e-5,
|
76 |
+
**kwargs,
|
77 |
+
):
|
78 |
+
"""
|
79 |
+
Log-Melspectrogram
|
80 |
+
|
81 |
+
Args:
|
82 |
+
audio_backend (str): 'torchaudio' or 'nnaudio'
|
83 |
+
sample_rate (int): sample rate in Hz
|
84 |
+
n_fft (int): FFT window size
|
85 |
+
hop_length (int): hop length in samples
|
86 |
+
f_min (int): minimum frequency in Hz
|
87 |
+
f_max (int): maximum frequency in Hz
|
88 |
+
n_mels (int): number of mel frequency bins
|
89 |
+
eps (float): epsilon for numerical stability
|
90 |
+
|
91 |
+
"""
|
92 |
+
super(Melspectrogram, self).__init__()
|
93 |
+
self.audio_backend = audio_backend.lower()
|
94 |
+
|
95 |
+
if audio_backend.lower() == 'torchaudio':
|
96 |
+
torchaudio = importlib.import_module('torchaudio')
|
97 |
+
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
98 |
+
sample_rate=sample_rate,
|
99 |
+
n_fft=n_fft,
|
100 |
+
hop_length=hop_length,
|
101 |
+
f_min=f_min,
|
102 |
+
f_max=f_max,
|
103 |
+
n_mels=n_mels,
|
104 |
+
)
|
105 |
+
elif audio_backend.lower() == 'nnaudio':
|
106 |
+
nnaudio = importlib.import_module('nnAudio.features')
|
107 |
+
self.mel_stft_nnaudio = nnaudio.mel.MelSpectrogram(
|
108 |
+
sr=sample_rate,
|
109 |
+
win_length=n_fft,
|
110 |
+
n_mels=n_mels,
|
111 |
+
hop_length=hop_length,
|
112 |
+
fmin=20, #f_min,
|
113 |
+
fmax=f_max)
|
114 |
+
else:
|
115 |
+
raise NotImplementedError(audio_backend)
|
116 |
+
self.eps = eps
|
117 |
+
|
118 |
+
@optional_compiler_disable
|
119 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor: # (B, 1, T)
|
120 |
+
"""
|
121 |
+
Args:
|
122 |
+
x (torch.Tensor): (B, 1, T)
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
torch.Tensor: (B, T, F)
|
126 |
+
|
127 |
+
"""
|
128 |
+
if self.audio_backend == 'torchaudio':
|
129 |
+
x = self.mel_stft(x) # (B, 1, F, T)
|
130 |
+
x = rearrange(x, 'b 1 f t -> b t f')
|
131 |
+
x = minmax_normalize(torch.log(x + self.eps))
|
132 |
+
# some versions of torchaudio returns nan when input is all-zeros
|
133 |
+
return torch.nan_to_num(x)
|
134 |
+
|
135 |
+
elif self.audio_backend == 'nnaudio':
|
136 |
+
x = self.mel_stft_nnaudio(x) # (B, F, T)
|
137 |
+
x = rearrange(x, 'b f t -> b t f')
|
138 |
+
x = minmax_normalize(torch.log(x + self.eps))
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
# -------------------------------------------------------------------------------------
|
143 |
+
# Log-spectrogram
|
144 |
+
# -------------------------------------------------------------------------------------
|
145 |
+
class Spectrogram(nn.Module):
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
audio_backend: Literal['torchaudio', 'nnaudio'] = 'torchaudio',
|
150 |
+
n_fft: int = 2048,
|
151 |
+
hop_length: int = 128,
|
152 |
+
eps: float = 1e-5,
|
153 |
+
**kwargs,
|
154 |
+
):
|
155 |
+
"""
|
156 |
+
Log-Magnitude Spectrogram
|
157 |
+
|
158 |
+
Args:
|
159 |
+
audio_backend (str): 'torchaudio' or 'nnaudio'
|
160 |
+
n_fft (int): FFT window size, creates n_fft // 2 + 1 freq-bins
|
161 |
+
hop_length (int): hop length in samples
|
162 |
+
eps (float): epsilon for numerical stability
|
163 |
+
|
164 |
+
"""
|
165 |
+
super(Spectrogram, self).__init__()
|
166 |
+
self.audio_backend = audio_backend.lower()
|
167 |
+
|
168 |
+
if audio_backend.lower() == 'torchaudio':
|
169 |
+
torchaudio = importlib.import_module('torchaudio')
|
170 |
+
self.stft = torchaudio.transforms.Spectrogram(n_fft=n_fft,
|
171 |
+
hop_length=hop_length,
|
172 |
+
window_fn=torch.hann_window,
|
173 |
+
power=1.) # (B, 1, F, T), remove DC component
|
174 |
+
elif audio_backend.lower() == 'nnaudio':
|
175 |
+
# TODO: nnAudio spectrogram
|
176 |
+
raise NotImplementedError(audio_backend)
|
177 |
+
else:
|
178 |
+
raise NotImplementedError(audio_backend)
|
179 |
+
self.eps = eps
|
180 |
+
|
181 |
+
@optional_compiler_disable
|
182 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor: # (B, 1, T)
|
183 |
+
"""
|
184 |
+
Args:
|
185 |
+
x (torch.Tensor): (B, 1, T)
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
torch.Tensor: (B, T, F)
|
189 |
+
|
190 |
+
"""
|
191 |
+
if self.audio_backend == 'torchaudio':
|
192 |
+
x = self.stft(x)[:, :, 1:, :] # (B, 1, F, T) remove DC component
|
193 |
+
x = rearrange(x, 'b 1 f t -> b t f')
|
194 |
+
x = minmax_normalize(torch.log(x + self.eps))
|
195 |
+
return torch.nan_to_num(x) # some versions of torchaudio returns nan when input is all-zeros
|
196 |
+
elif self.audio_backend == 'nnaudio':
|
197 |
+
raise NotImplementedError(self.audio_backend)
|
198 |
+
|
199 |
+
|
200 |
+
def get_spectrogram_layer_from_audio_cfg(audio_cfg: Optional[Dict] = None) -> Tuple[nn.Module, Tuple[int]]:
|
201 |
+
"""Get mel-/spectrogram layer from config.
|
202 |
+
- Used by 'ymt3' to create a spectrogram layer.
|
203 |
+
- Returns output shape of spectrogram layer, which is used to determine input shape of model.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
audio_cfg (dict): see config/config.py
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
layer (nn.Module): mel-/spectrogram layer
|
210 |
+
output_shape (tuple): inferred output shape of layer excluding batch dim. (T, F)
|
211 |
+
"""
|
212 |
+
if audio_cfg is None:
|
213 |
+
audio_cfg = default_audio_cfg
|
214 |
+
|
215 |
+
if audio_cfg['codec'] == 'melspec':
|
216 |
+
layer = Melspectrogram(**audio_cfg)
|
217 |
+
elif audio_cfg['codec'] == 'spec':
|
218 |
+
layer = Spectrogram(**audio_cfg)
|
219 |
+
else:
|
220 |
+
raise NotImplementedError(audio_cfg['codec'])
|
221 |
+
|
222 |
+
# Infer output shape of the spectrogram layer
|
223 |
+
with torch.no_grad():
|
224 |
+
output_shape = layer(torch.randn(1, 1, audio_cfg['input_frames'])).shape[1:]
|
225 |
+
return layer, output_shape
|
model/t5mod.py
ADDED
@@ -0,0 +1,687 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
# ==============================================================================
|
11 |
+
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
12 |
+
#
|
13 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
14 |
+
# you may not use this file except in compliance with the License.
|
15 |
+
# You may obtain a copy of the License at
|
16 |
+
#
|
17 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
18 |
+
#
|
19 |
+
# Unless required by applicable law or agreed to in writing, software
|
20 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
21 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
22 |
+
# See the License for the specific language governing permissions and
|
23 |
+
# limitations under the License.
|
24 |
+
import copy
|
25 |
+
from typing import Optional, Tuple, Union, Dict
|
26 |
+
from einops import rearrange
|
27 |
+
from model.ops import count_parameters
|
28 |
+
|
29 |
+
import torch
|
30 |
+
from torch import nn
|
31 |
+
from torch.utils.checkpoint import checkpoint
|
32 |
+
from transformers.utils import logging
|
33 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
34 |
+
from transformers.models.t5.modeling_t5 import (T5LayerNorm, T5LayerSelfAttention, T5LayerCrossAttention, T5LayerFF)
|
35 |
+
from transformers.modeling_outputs import (BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions)
|
36 |
+
from transformers import T5Config, T5PreTrainedModel
|
37 |
+
from model.positional_encoding import FixedSinusoidalPositionalEmbedding
|
38 |
+
from model.ff_layer import get_ff_layer
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
class T5BlockYMT3(nn.Module):
|
44 |
+
"""T5 Block, modified to allow using different types of FF layers."""
|
45 |
+
|
46 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
47 |
+
super().__init__()
|
48 |
+
self.is_decoder = config.is_decoder
|
49 |
+
self.layer = nn.ModuleList()
|
50 |
+
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
|
51 |
+
if self.is_decoder:
|
52 |
+
self.layer.append(T5LayerCrossAttention(config))
|
53 |
+
|
54 |
+
# FF layer
|
55 |
+
if config.ff_layer_type == 't5_gmlp':
|
56 |
+
self.layer.append(T5LayerFF(config))
|
57 |
+
elif config.ff_layer_type == 'moe':
|
58 |
+
config.moe_num_experts = 8
|
59 |
+
config.moe_topk = 2
|
60 |
+
config.hidden_act = 'silu'
|
61 |
+
moe = get_ff_layer(config, input_size=config.d_model, widening_factor=config.ff_widening_factor)
|
62 |
+
self.layer.append(moe)
|
63 |
+
else:
|
64 |
+
raise ValueError(f"Unknown FF layer type: {config.ff_layer_type}.")
|
65 |
+
self.ff_layer_type = config.ff_layer_type
|
66 |
+
|
67 |
+
def forward(
|
68 |
+
self,
|
69 |
+
hidden_states,
|
70 |
+
attention_mask=None,
|
71 |
+
position_bias=None,
|
72 |
+
encoder_hidden_states=None,
|
73 |
+
encoder_attention_mask=None,
|
74 |
+
encoder_decoder_position_bias=None,
|
75 |
+
layer_head_mask=None,
|
76 |
+
cross_attn_layer_head_mask=None,
|
77 |
+
past_key_value=None,
|
78 |
+
use_cache=False,
|
79 |
+
output_attentions=False,
|
80 |
+
return_dict=True,
|
81 |
+
):
|
82 |
+
if past_key_value is not None:
|
83 |
+
if not self.is_decoder:
|
84 |
+
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
|
85 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
86 |
+
|
87 |
+
if len(past_key_value) != expected_num_past_key_values:
|
88 |
+
raise ValueError(
|
89 |
+
f"There should be {expected_num_past_key_values} past states. "
|
90 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
91 |
+
f"Got {len(past_key_value)} past key / value states")
|
92 |
+
|
93 |
+
self_attn_past_key_value = past_key_value[:2]
|
94 |
+
cross_attn_past_key_value = past_key_value[2:]
|
95 |
+
else:
|
96 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
97 |
+
|
98 |
+
self_attention_outputs = self.layer[0](
|
99 |
+
hidden_states,
|
100 |
+
attention_mask=attention_mask,
|
101 |
+
position_bias=position_bias,
|
102 |
+
layer_head_mask=layer_head_mask,
|
103 |
+
past_key_value=self_attn_past_key_value,
|
104 |
+
use_cache=use_cache,
|
105 |
+
output_attentions=output_attentions,
|
106 |
+
)
|
107 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
108 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
109 |
+
|
110 |
+
# clamp inf values to enable fp16 training
|
111 |
+
if hidden_states.dtype == torch.float16:
|
112 |
+
clamp_value = torch.where(
|
113 |
+
torch.isinf(hidden_states).any(),
|
114 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
115 |
+
torch.finfo(hidden_states.dtype).max,
|
116 |
+
)
|
117 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
118 |
+
|
119 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
120 |
+
if do_cross_attention:
|
121 |
+
# the actual query length is unknown for cross attention
|
122 |
+
# if using past key value states. Need to inject it here
|
123 |
+
if present_key_value_state is not None:
|
124 |
+
query_length = present_key_value_state[0].shape[2]
|
125 |
+
else:
|
126 |
+
query_length = None
|
127 |
+
|
128 |
+
cross_attention_outputs = self.layer[1](
|
129 |
+
hidden_states,
|
130 |
+
key_value_states=encoder_hidden_states,
|
131 |
+
attention_mask=encoder_attention_mask,
|
132 |
+
position_bias=encoder_decoder_position_bias,
|
133 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
134 |
+
past_key_value=cross_attn_past_key_value,
|
135 |
+
query_length=query_length,
|
136 |
+
use_cache=use_cache,
|
137 |
+
output_attentions=output_attentions,
|
138 |
+
)
|
139 |
+
hidden_states = cross_attention_outputs[0]
|
140 |
+
|
141 |
+
# clamp inf values to enable fp16 training
|
142 |
+
if hidden_states.dtype == torch.float16:
|
143 |
+
clamp_value = torch.where(
|
144 |
+
torch.isinf(hidden_states).any(),
|
145 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
146 |
+
torch.finfo(hidden_states.dtype).max,
|
147 |
+
)
|
148 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
149 |
+
|
150 |
+
# Combine self attn and cross attn key value states
|
151 |
+
if present_key_value_state is not None:
|
152 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
153 |
+
|
154 |
+
# Keep cross-attention outputs and relative position weights
|
155 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
156 |
+
|
157 |
+
# Apply Feed Forward layer - Modified for MoE
|
158 |
+
if self.ff_layer_type == 't5_gmlp':
|
159 |
+
hidden_states = self.layer[-1](hidden_states)
|
160 |
+
elif self.ff_layer_type == 'moe':
|
161 |
+
hidden_states = hidden_states + self.layer[-1](hidden_states)[0] # residual connection outside the MoE
|
162 |
+
else:
|
163 |
+
raise ValueError(f"Unknown FF layer type: {self.ff_layer_type}.")
|
164 |
+
|
165 |
+
# clamp inf values to enable fp16 training
|
166 |
+
if hidden_states.dtype == torch.float16:
|
167 |
+
clamp_value = torch.where(
|
168 |
+
torch.isinf(hidden_states).any(),
|
169 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
170 |
+
torch.finfo(hidden_states.dtype).max,
|
171 |
+
)
|
172 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
173 |
+
|
174 |
+
outputs = (hidden_states,)
|
175 |
+
|
176 |
+
if use_cache:
|
177 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
178 |
+
else:
|
179 |
+
outputs = outputs + attention_outputs
|
180 |
+
|
181 |
+
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
182 |
+
|
183 |
+
|
184 |
+
class T5StackYMT3(T5PreTrainedModel):
|
185 |
+
"""
|
186 |
+
T5Stack, modified for YMT3 with:
|
187 |
+
- absolute sinusoidal absolute positional encoding
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
config,
|
193 |
+
):
|
194 |
+
super().__init__(config)
|
195 |
+
self.is_decoder = config.is_decoder
|
196 |
+
|
197 |
+
# Positional encoding (modified)
|
198 |
+
self.use_t5_trainable_pe = False
|
199 |
+
self.additive_pe = None
|
200 |
+
|
201 |
+
pos_enc_type = getattr(config, 'position_encoding_type', 'sinusoidal')
|
202 |
+
if pos_enc_type in ['sinusoidal']:
|
203 |
+
self.additive_pe = FixedSinusoidalPositionalEmbedding(config.num_max_positions,
|
204 |
+
embedding_dim=config.d_model)
|
205 |
+
self.block = nn.ModuleList(
|
206 |
+
[T5BlockYMT3(config, has_relative_attention_bias=False) for i in range(config.num_layers)])
|
207 |
+
elif pos_enc_type == 'trainable':
|
208 |
+
self.use_t5_trainable_pe = True
|
209 |
+
# Stack blocks
|
210 |
+
self.block = nn.ModuleList(
|
211 |
+
[T5BlockYMT3(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)])
|
212 |
+
|
213 |
+
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
214 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
215 |
+
|
216 |
+
# Initialize weights and apply final processing
|
217 |
+
self.post_init()
|
218 |
+
# Model parallel
|
219 |
+
self.gradient_checkpointing = False
|
220 |
+
|
221 |
+
def forward(
|
222 |
+
self,
|
223 |
+
# input_ids=None,
|
224 |
+
inputs_embeds=None,
|
225 |
+
attention_mask=None,
|
226 |
+
encoder_hidden_states=None,
|
227 |
+
encoder_attention_mask=None,
|
228 |
+
head_mask=None,
|
229 |
+
cross_attn_head_mask=None,
|
230 |
+
past_key_values=None,
|
231 |
+
use_cache=None,
|
232 |
+
output_attentions=None,
|
233 |
+
output_hidden_states=None,
|
234 |
+
return_dict=None,
|
235 |
+
):
|
236 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
237 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
238 |
+
output_hidden_states = (output_hidden_states
|
239 |
+
if output_hidden_states is not None else self.config.output_hidden_states)
|
240 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
241 |
+
|
242 |
+
if inputs_embeds is not None:
|
243 |
+
input_shape = inputs_embeds.size()[:-1]
|
244 |
+
else:
|
245 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
246 |
+
raise ValueError(f"You have to specify {err_msg_prefix}inputs_embeds")
|
247 |
+
|
248 |
+
batch_size, seq_length = input_shape
|
249 |
+
|
250 |
+
# required mask seq length can be calculated via length of past
|
251 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
252 |
+
|
253 |
+
# mod: required for additive PE
|
254 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
255 |
+
|
256 |
+
if use_cache is True:
|
257 |
+
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
258 |
+
|
259 |
+
if attention_mask is None:
|
260 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
261 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
262 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
263 |
+
encoder_attention_mask = torch.ones(batch_size,
|
264 |
+
encoder_seq_length,
|
265 |
+
device=inputs_embeds.device,
|
266 |
+
dtype=torch.long)
|
267 |
+
|
268 |
+
# initialize past_key_values with `None` if past does not exist
|
269 |
+
if past_key_values is None:
|
270 |
+
past_key_values = [None] * len(self.block)
|
271 |
+
|
272 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
273 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
274 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
275 |
+
|
276 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
277 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
278 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
279 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
280 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
281 |
+
if encoder_attention_mask is None:
|
282 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
283 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
284 |
+
else:
|
285 |
+
encoder_extended_attention_mask = None
|
286 |
+
|
287 |
+
if self.gradient_checkpointing and self.training:
|
288 |
+
if use_cache:
|
289 |
+
logger.warning_once(
|
290 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
291 |
+
use_cache = False
|
292 |
+
|
293 |
+
# Prepare head mask if needed
|
294 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
295 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
296 |
+
present_key_value_states = () if use_cache else None
|
297 |
+
all_hidden_states = () if output_hidden_states else None
|
298 |
+
all_attentions = () if output_attentions else None
|
299 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
300 |
+
position_bias = None
|
301 |
+
encoder_decoder_position_bias = None
|
302 |
+
|
303 |
+
# mod: additive absolute PE (sinusoidal)
|
304 |
+
if self.additive_pe is not None:
|
305 |
+
inputs_embeds = inputs_embeds + self.additive_pe(inputs_embeds.shape[1], past_key_values_length)
|
306 |
+
else:
|
307 |
+
pass # trinable PE is implemented in T5Block
|
308 |
+
|
309 |
+
hidden_states = self.dropout(inputs_embeds)
|
310 |
+
|
311 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
312 |
+
layer_head_mask = head_mask[i]
|
313 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
314 |
+
|
315 |
+
if output_hidden_states:
|
316 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
317 |
+
|
318 |
+
if self.gradient_checkpointing and self.training:
|
319 |
+
|
320 |
+
def create_custom_forward(module):
|
321 |
+
|
322 |
+
def custom_forward(*inputs):
|
323 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
324 |
+
|
325 |
+
return custom_forward
|
326 |
+
|
327 |
+
layer_outputs = checkpoint(
|
328 |
+
create_custom_forward(layer_module),
|
329 |
+
hidden_states,
|
330 |
+
extended_attention_mask,
|
331 |
+
position_bias,
|
332 |
+
encoder_hidden_states,
|
333 |
+
encoder_extended_attention_mask,
|
334 |
+
encoder_decoder_position_bias,
|
335 |
+
layer_head_mask,
|
336 |
+
cross_attn_layer_head_mask,
|
337 |
+
None, # past_key_value is always None with gradient checkpointing
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
layer_outputs = layer_module(
|
341 |
+
hidden_states,
|
342 |
+
attention_mask=extended_attention_mask,
|
343 |
+
position_bias=position_bias,
|
344 |
+
encoder_hidden_states=encoder_hidden_states,
|
345 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
346 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
347 |
+
layer_head_mask=layer_head_mask,
|
348 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
349 |
+
past_key_value=past_key_value,
|
350 |
+
use_cache=use_cache,
|
351 |
+
output_attentions=output_attentions,
|
352 |
+
)
|
353 |
+
|
354 |
+
# layer_outputs is a tuple with:
|
355 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
356 |
+
if use_cache is False:
|
357 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
358 |
+
|
359 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
360 |
+
|
361 |
+
# We share the position biases between the layers - the first layer store them
|
362 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
363 |
+
# (cross-attention position bias), (cross-attention weights)
|
364 |
+
position_bias = layer_outputs[2]
|
365 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
366 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
367 |
+
# append next layer key value states
|
368 |
+
if use_cache:
|
369 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
370 |
+
|
371 |
+
if output_attentions:
|
372 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
373 |
+
if self.is_decoder:
|
374 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
375 |
+
|
376 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
377 |
+
hidden_states = self.dropout(hidden_states)
|
378 |
+
|
379 |
+
# Add last layer
|
380 |
+
if output_hidden_states:
|
381 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
382 |
+
|
383 |
+
if not return_dict:
|
384 |
+
return tuple(v for v in [
|
385 |
+
hidden_states,
|
386 |
+
present_key_value_states,
|
387 |
+
all_hidden_states,
|
388 |
+
all_attentions,
|
389 |
+
all_cross_attentions,
|
390 |
+
] if v is not None)
|
391 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
392 |
+
last_hidden_state=hidden_states,
|
393 |
+
past_key_values=present_key_value_states,
|
394 |
+
hidden_states=all_hidden_states,
|
395 |
+
attentions=all_attentions,
|
396 |
+
cross_attentions=all_cross_attentions,
|
397 |
+
)
|
398 |
+
|
399 |
+
|
400 |
+
class T5EncoderYMT3(T5PreTrainedModel):
|
401 |
+
# _keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
|
402 |
+
|
403 |
+
def __init__(self, encoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
|
404 |
+
if config is None:
|
405 |
+
config = T5Config()
|
406 |
+
if encoder_config is not None:
|
407 |
+
config = copy.deepcopy(config)
|
408 |
+
config.update(encoder_config)
|
409 |
+
|
410 |
+
if hasattr(config, "ff_widening_factor"):
|
411 |
+
config.d_ff = int(config.d_model) * int(config.ff_widening_factor)
|
412 |
+
|
413 |
+
config.is_decoder = False
|
414 |
+
config.use_cache = False
|
415 |
+
config.is_encoder_decoder = False
|
416 |
+
|
417 |
+
super().__init__(config)
|
418 |
+
self.model_dim = config.d_model
|
419 |
+
|
420 |
+
self.encoder = T5StackYMT3(config)
|
421 |
+
|
422 |
+
# Initialize weights and apply final processing
|
423 |
+
self.post_init()
|
424 |
+
|
425 |
+
"""temporary fix for torch.compile issue"""
|
426 |
+
|
427 |
+
def forward(self, **kwargs):
|
428 |
+
if self.training is True:
|
429 |
+
return self._forward_compile(**kwargs)
|
430 |
+
else:
|
431 |
+
return self._forward_no_compile(**kwargs)
|
432 |
+
|
433 |
+
def _forward_no_compile(self, **kwargs):
|
434 |
+
return self._forward(**kwargs)
|
435 |
+
|
436 |
+
@torch.compile
|
437 |
+
def _forward_compile(self, **kwargs):
|
438 |
+
return self._forward(**kwargs)
|
439 |
+
|
440 |
+
def _forward(
|
441 |
+
self,
|
442 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
443 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
444 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
445 |
+
output_attentions: Optional[bool] = None,
|
446 |
+
output_hidden_states: Optional[bool] = None,
|
447 |
+
return_dict: Optional[bool] = None,
|
448 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
449 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
450 |
+
|
451 |
+
# Encode
|
452 |
+
encoder_outputs = self.encoder(
|
453 |
+
inputs_embeds=inputs_embeds,
|
454 |
+
attention_mask=attention_mask,
|
455 |
+
head_mask=head_mask,
|
456 |
+
output_attentions=output_attentions,
|
457 |
+
output_hidden_states=output_hidden_states,
|
458 |
+
return_dict=return_dict,
|
459 |
+
)
|
460 |
+
|
461 |
+
if not return_dict:
|
462 |
+
return encoder_outputs
|
463 |
+
else:
|
464 |
+
return BaseModelOutput(
|
465 |
+
last_hidden_state=encoder_outputs[0],
|
466 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
467 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
468 |
+
)
|
469 |
+
|
470 |
+
|
471 |
+
class T5DecoderYMT3(T5PreTrainedModel):
|
472 |
+
|
473 |
+
def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
|
474 |
+
if config is None:
|
475 |
+
config = T5Config()
|
476 |
+
if decoder_config is not None:
|
477 |
+
config = copy.deepcopy(config)
|
478 |
+
config.update(decoder_config)
|
479 |
+
|
480 |
+
if hasattr(config, "ff_widening_factor"):
|
481 |
+
config.d_ff = int(config.d_model) * int(config.ff_widening_factor)
|
482 |
+
|
483 |
+
config.is_decoder = True
|
484 |
+
config.is_encoder_decoder = False
|
485 |
+
|
486 |
+
super().__init__(config)
|
487 |
+
self.model_dim = config.d_model
|
488 |
+
|
489 |
+
self.decoder = T5StackYMT3(config)
|
490 |
+
|
491 |
+
# Initialize weights and apply final processing
|
492 |
+
self.post_init()
|
493 |
+
|
494 |
+
"""temporary fix for torch.compile issue"""
|
495 |
+
|
496 |
+
def forward(self, **kwargs):
|
497 |
+
if self.training is True:
|
498 |
+
return self._forward_compile(**kwargs)
|
499 |
+
else:
|
500 |
+
return self._forward_no_compile(**kwargs)
|
501 |
+
|
502 |
+
def _forward_no_compile(self, **kwargs):
|
503 |
+
return self._forward(**kwargs)
|
504 |
+
|
505 |
+
@torch.compile
|
506 |
+
def _forward_compile(self, **kwargs):
|
507 |
+
return self._forward(**kwargs)
|
508 |
+
|
509 |
+
def _forward(
|
510 |
+
self,
|
511 |
+
# input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder
|
512 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
513 |
+
attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask
|
514 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
515 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
516 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
517 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
518 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
519 |
+
use_cache: Optional[bool] = None,
|
520 |
+
output_attentions: Optional[bool] = None,
|
521 |
+
output_hidden_states: Optional[bool] = None,
|
522 |
+
return_dict: Optional[bool] = None,
|
523 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]:
|
524 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
525 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
526 |
+
|
527 |
+
if isinstance(encoder_hidden_states, BaseModelOutput):
|
528 |
+
encoder_hidden_states = encoder_hidden_states.last_hidden_state
|
529 |
+
|
530 |
+
# Decode
|
531 |
+
decoder_outputs = self.decoder(
|
532 |
+
inputs_embeds=inputs_embeds,
|
533 |
+
attention_mask=attention_mask,
|
534 |
+
past_key_values=past_key_values,
|
535 |
+
encoder_hidden_states=encoder_hidden_states,
|
536 |
+
encoder_attention_mask=encoder_attention_mask,
|
537 |
+
head_mask=head_mask,
|
538 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
539 |
+
use_cache=use_cache,
|
540 |
+
output_attentions=output_attentions,
|
541 |
+
output_hidden_states=output_hidden_states,
|
542 |
+
return_dict=return_dict,
|
543 |
+
)
|
544 |
+
|
545 |
+
if not return_dict:
|
546 |
+
return decoder_outputs
|
547 |
+
else:
|
548 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
549 |
+
last_hidden_state=decoder_outputs[0],
|
550 |
+
past_key_values=decoder_outputs[1],
|
551 |
+
hidden_states=decoder_outputs[2] if len(decoder_outputs) > 2 else None,
|
552 |
+
attentions=decoder_outputs[3] if len(decoder_outputs) > 3 else None,
|
553 |
+
cross_attentions=decoder_outputs[4] if len(decoder_outputs) > 4 else None,
|
554 |
+
)
|
555 |
+
|
556 |
+
|
557 |
+
class MultiChannelT5Decoder(T5PreTrainedModel):
|
558 |
+
|
559 |
+
def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
|
560 |
+
if config is None:
|
561 |
+
config = T5Config()
|
562 |
+
if decoder_config is not None:
|
563 |
+
config = copy.deepcopy(config)
|
564 |
+
config.update(decoder_config)
|
565 |
+
|
566 |
+
if hasattr(config, "ff_widening_factor"):
|
567 |
+
config.d_ff = int(config.d_model) * int(config.ff_widening_factor)
|
568 |
+
|
569 |
+
config.is_decoder = True
|
570 |
+
config.is_encoder_decoder = False
|
571 |
+
|
572 |
+
super().__init__(config)
|
573 |
+
self.model_dim = config.d_model
|
574 |
+
self.decoder = T5StackYMT3(config)
|
575 |
+
|
576 |
+
# Multi-channel parameters
|
577 |
+
self.num_channels = config.num_channels
|
578 |
+
|
579 |
+
# Initialize weights and apply final processing
|
580 |
+
self.post_init()
|
581 |
+
|
582 |
+
"""temporary fix for torch.compile issue"""
|
583 |
+
|
584 |
+
def forward(self, **kwargs):
|
585 |
+
if self.training is True:
|
586 |
+
return self._forward_compile(**kwargs)
|
587 |
+
else:
|
588 |
+
return self._forward_no_compile(**kwargs)
|
589 |
+
|
590 |
+
def _forward_no_compile(self, **kwargs):
|
591 |
+
return self._forward(**kwargs)
|
592 |
+
|
593 |
+
@torch.compile
|
594 |
+
def _forward_compile(self, **kwargs):
|
595 |
+
return self._forward(**kwargs)
|
596 |
+
|
597 |
+
def _forward(
|
598 |
+
self,
|
599 |
+
# input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder
|
600 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
601 |
+
attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask
|
602 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
603 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
604 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
605 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
606 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
607 |
+
use_cache: Optional[bool] = None,
|
608 |
+
output_attentions: Optional[bool] = None,
|
609 |
+
output_hidden_states: Optional[bool] = None,
|
610 |
+
return_dict: Optional[bool] = None,
|
611 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]:
|
612 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
613 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
614 |
+
"""
|
615 |
+
Args:
|
616 |
+
inputs_embeds: torch.FloatTensor (B, K, T, D), where K is the number of channels
|
617 |
+
encoder_hidden_states: torch.FloatTensor (B, K, T, D), where K is the number of channels
|
618 |
+
|
619 |
+
Returns:
|
620 |
+
decoder_outputs: BaseModelOutputWithPastAndCrossAttentions
|
621 |
+
last_hidden_state: torch.FloatTensor (B, K, T, D), where K is the number of channels
|
622 |
+
past_key_values: Tuple[Tuple[torch.Tensor]]
|
623 |
+
hidden_states: Tuple[torch.FloatTensor]
|
624 |
+
attentions: Tuple[torch.FloatTensor]
|
625 |
+
cross_attentions: Tuple[torch.FloatTensor]
|
626 |
+
|
627 |
+
"""
|
628 |
+
if isinstance(encoder_hidden_states, BaseModelOutput):
|
629 |
+
encoder_hidden_states = encoder_hidden_states.last_hidden_state
|
630 |
+
|
631 |
+
# Reshape input_embeds and encoder_hidden_states
|
632 |
+
b, k, t, d = inputs_embeds.size()
|
633 |
+
inputs_embeds = rearrange(inputs_embeds, 'b k t d -> (b k) t d')
|
634 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, 'b k t d -> (b k) t d')
|
635 |
+
|
636 |
+
# K-channel Decoding
|
637 |
+
decoder_outputs = self.decoder(
|
638 |
+
inputs_embeds=inputs_embeds,
|
639 |
+
attention_mask=attention_mask,
|
640 |
+
past_key_values=past_key_values,
|
641 |
+
encoder_hidden_states=encoder_hidden_states,
|
642 |
+
encoder_attention_mask=encoder_attention_mask,
|
643 |
+
head_mask=head_mask,
|
644 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
645 |
+
use_cache=use_cache,
|
646 |
+
output_attentions=output_attentions,
|
647 |
+
output_hidden_states=output_hidden_states,
|
648 |
+
return_dict=True,
|
649 |
+
)
|
650 |
+
|
651 |
+
# Reshape decoder_outputs
|
652 |
+
decoder_outputs['last_hidden_state'] = rearrange(decoder_outputs['last_hidden_state'],
|
653 |
+
'(b k) t d -> b k t d',
|
654 |
+
b=b,
|
655 |
+
k=k)
|
656 |
+
|
657 |
+
if not return_dict:
|
658 |
+
# Collecting values from decoder_outputs in a specific order
|
659 |
+
outputs = (
|
660 |
+
decoder_outputs['last_hidden_state'],
|
661 |
+
decoder_outputs.get('past_key_values', None),
|
662 |
+
decoder_outputs.get('hidden_states', None),
|
663 |
+
decoder_outputs.get('attentions', None),
|
664 |
+
decoder_outputs.get('cross_attentions', None),
|
665 |
+
)
|
666 |
+
return tuple(v for v in outputs if v is not None)
|
667 |
+
else:
|
668 |
+
return decoder_outputs # ['last_hidden_state']: (B, K, T, D)
|
669 |
+
|
670 |
+
|
671 |
+
def test_multi_channel_t5_decoder():
|
672 |
+
# Test multi-channel decoder
|
673 |
+
config = T5Config()
|
674 |
+
config.num_channels = 4
|
675 |
+
config.d_model = 32
|
676 |
+
config.num_layers = 2
|
677 |
+
config.num_heads = 2
|
678 |
+
config.num_max_positions = 64 # for positional encoding
|
679 |
+
|
680 |
+
decoder = MultiChannelT5Decoder(decoder_config=None, config=config)
|
681 |
+
decoder.eval()
|
682 |
+
|
683 |
+
input_emb = torch.rand(2, 4, 64, 32) # (B, K, T, D)
|
684 |
+
enc_hs = torch.rand(2, 4, 64, 32) # (B, K, T, D)
|
685 |
+
out = decoder(inputs_embeds=input_emb, encoder_hidden_states=enc_hs, return_dict=True)
|
686 |
+
# out['last_hidden_state']: (B, K, T, D)
|
687 |
+
# out['past_key_values']: Tuple[Tuple[torch.Tensor]]
|
model/t5mod_helper.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""t5mod_helper.py"""
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from model.t5mod import T5DecoderYMT3, MultiChannelT5Decoder
|
14 |
+
from typing import Optional, Callable, Union, Literal
|
15 |
+
|
16 |
+
|
17 |
+
@torch.no_grad()
|
18 |
+
def task_cond_dec_generate(decoder: Union[T5DecoderYMT3, MultiChannelT5Decoder],
|
19 |
+
decoder_type: Literal["t5", "multi-t5"],
|
20 |
+
embed_tokens: nn.Embedding,
|
21 |
+
lm_head: nn.Module,
|
22 |
+
encoder_hidden_states: torch.FloatTensor,
|
23 |
+
shift_right_fn: Callable,
|
24 |
+
prefix_ids: Optional[torch.LongTensor] = None,
|
25 |
+
max_length: int = 1024,
|
26 |
+
stop_at_eos: bool = True,
|
27 |
+
eos_id: Optional[int] = 1,
|
28 |
+
pad_id: Optional[int] = 0,
|
29 |
+
decoder_start_token_id: Optional[int] = 0,
|
30 |
+
debug: bool = False) -> torch.LongTensor:
|
31 |
+
"""
|
32 |
+
Generate sequence by task conditioning on the decoder side
|
33 |
+
:An extension of transofrmers.generate() function for the model with
|
34 |
+
conditioning only on the decoder side.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
decoder: T5DecoderYMT3 or MultiChannelT5Decoder, any decoder model with T5Stack architecture
|
38 |
+
decoder_type: Literal["t5", "multi-t5"], type of decoder
|
39 |
+
embed_tokens: nn.Embedding, embedding layer for the decoder
|
40 |
+
lm_head: nn.Module, language model head
|
41 |
+
encoder_hidden_states: torch.FloatTensor, (B, T, D) or (B, K, T, D) last hidden states
|
42 |
+
shift_right_fn: Callable, shift_right function of the decoder
|
43 |
+
prefix_ids: torch.LongTensor, (B, prefix_len) prefix ids typically used as task conditioning to decoder.
|
44 |
+
max_length: int, max token length to generate (default is 1024)
|
45 |
+
stop_at_eos: bool, whether to early-stop when all predictions in the batch are the <eos> token.
|
46 |
+
eos_id: int, the id of the <eos> token (default is 1)
|
47 |
+
pad_id: int, the id of the <pad> token (default is 0)
|
48 |
+
decoder_start_token_id: int, the id of the <bos> token (default is 0)
|
49 |
+
debug: bool, whether to print debug information
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
pred_ids: torch.LongTensor, (B, task_len + N) or (B, C, task_len + N) predicted token ids
|
53 |
+
"""
|
54 |
+
bsz = encoder_hidden_states.shape[0]
|
55 |
+
device = encoder_hidden_states.device
|
56 |
+
|
57 |
+
# Prepare dec_input_shape: (B, 1) or (B, C, 1)
|
58 |
+
if decoder_type == "t5":
|
59 |
+
dec_input_shape = (bsz, 1)
|
60 |
+
elif decoder_type == "multi-t5":
|
61 |
+
dec_input_shape = (bsz, decoder.num_channels, 1)
|
62 |
+
else:
|
63 |
+
raise ValueError(f"decoder_type {decoder_type} is not supported.")
|
64 |
+
|
65 |
+
# Prepare dec_input_ids: <bos> + task_prefix_token (B, prefix_len + 1) or (B, C, prefix_len + 1)
|
66 |
+
if prefix_ids is not None and prefix_ids.numel() > 0:
|
67 |
+
dec_input_ids = shift_right_fn(prefix_ids)
|
68 |
+
prefix_length = prefix_ids.shape[-1]
|
69 |
+
else:
|
70 |
+
# if prefix_ids is None, use <bos> as initial inSput
|
71 |
+
dec_input_ids = torch.tile(torch.LongTensor([decoder_start_token_id]).to(device), dec_input_shape)
|
72 |
+
prefix_length = 0
|
73 |
+
dec_inputs_embeds = embed_tokens(dec_input_ids) # (B, L, D) or (B, C, L, D)
|
74 |
+
|
75 |
+
# Generate decoder hidden state and past_key_values using prefix:
|
76 |
+
"""
|
77 |
+
- initial inputs_embeds can be a sequence, without using past_key_values
|
78 |
+
- dec_hs: (B, 1, D)
|
79 |
+
- past_key_values: Tuple of length M for M layers of decoder
|
80 |
+
- pred_ids: (B, prefix_len) where N is the length of prefix_ids
|
81 |
+
"""
|
82 |
+
dec_hs, past_key_values = decoder(inputs_embeds=dec_inputs_embeds,
|
83 |
+
encoder_hidden_states=encoder_hidden_states,
|
84 |
+
return_dict=False)
|
85 |
+
logits = lm_head(dec_hs) # (b, T=1, vocab_size) or (b, C, T=1, vocab_size)
|
86 |
+
pred_ids = logits.argmax(-1) # (B, prefix_len + 1) or (B, C, prefix_len + 1)
|
87 |
+
|
88 |
+
# keep track of which sequences are already finished
|
89 |
+
unfinished_sequences = torch.ones(dec_input_shape, dtype=torch.long, device=device)
|
90 |
+
|
91 |
+
# Fast generation with past_key_values for the rest of the sequence
|
92 |
+
if decoder_type == "t5":
|
93 |
+
dec_input_ids = pred_ids[:, -1].unsqueeze(-1) # (B, 1)
|
94 |
+
elif decoder_type == "multi-t5":
|
95 |
+
dec_input_ids = pred_ids[:, :, -1].unsqueeze(-1) # (B, C, 1)
|
96 |
+
for i in range(max_length - prefix_length - 1): # -1 for <eos> token
|
97 |
+
if debug:
|
98 |
+
past_key_values_length = past_key_values[0][0].shape[
|
99 |
+
2] # past_key_values_length determines the positional embedding
|
100 |
+
print(f'i = {i}, past_key_values_length = {past_key_values_length}, pred_ids.shape = {pred_ids.shape}')
|
101 |
+
|
102 |
+
# when past_key_values is provided, we use only the last token as input_ids
|
103 |
+
dec_inputs_embeds = embed_tokens(dec_input_ids) # (B, 1, D) or (B, C, 1, D)
|
104 |
+
dec_hs, _past_key_values = decoder(inputs_embeds=dec_inputs_embeds,
|
105 |
+
encoder_hidden_states=encoder_hidden_states,
|
106 |
+
past_key_values=past_key_values,
|
107 |
+
return_dict=False)
|
108 |
+
logits = lm_head(dec_hs) # (b, 1, vocab_size) or (b, K, 1, vocab_size)
|
109 |
+
_pred_ids = logits.argmax(-1) # (B, 1) or (B, K, 1)
|
110 |
+
|
111 |
+
# update input_ids and past_key_values for next iteration
|
112 |
+
dec_input_ids = _pred_ids.clone(
|
113 |
+
) # (B, 1) or (B, C, 1), deepcopy of _pred_ids because _pred_ids will be modified for finished sentences
|
114 |
+
past_key_values = _past_key_values
|
115 |
+
|
116 |
+
# finished sentences should have their next token be a padding token
|
117 |
+
if eos_id is not None:
|
118 |
+
if pad_id is None:
|
119 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
120 |
+
_pred_ids = _pred_ids * unfinished_sequences + pad_id * (1 - unfinished_sequences)
|
121 |
+
|
122 |
+
# update pred_ids
|
123 |
+
pred_ids = torch.cat((pred_ids, _pred_ids), dim=-1) # (B, T') or (B, C, T') with increasing T'
|
124 |
+
|
125 |
+
# update state of unfinished_sequences
|
126 |
+
if eos_id is not None:
|
127 |
+
unfinished_sequences = unfinished_sequences * _pred_ids.ne(eos_id).long()
|
128 |
+
|
129 |
+
# early-stop when each sentence is finished
|
130 |
+
if stop_at_eos is True and unfinished_sequences.max() == 0:
|
131 |
+
break
|
132 |
+
|
133 |
+
return pred_ids # (B, L) or (B, C, L)
|
pytest.ini
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[pytest]
|
2 |
+
pythonpath = .
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mirdata
|
2 |
+
mido
|
3 |
+
matplotlib
|
4 |
+
lightning>=2.2.1
|
5 |
+
pytest-timeout
|
6 |
+
pytest
|
7 |
+
deprecated
|
8 |
+
librosa
|
9 |
+
einops
|
10 |
+
transformers==4.45
|
11 |
+
wandb
|
12 |
+
smart-open
|
13 |
+
git+https://github.com/craffel/mir_eval.git
|
14 |
+
git+https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup.git
|
15 |
+
torchaudio
|
16 |
+
huggingface_hub
|
test.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
""" test.py """
|
11 |
+
import os
|
12 |
+
import pprint
|
13 |
+
import argparse
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from utils.data_modules import AMTDataModule
|
17 |
+
from utils.task_manager import TaskManager
|
18 |
+
from model.init_train import initialize_trainer, update_config
|
19 |
+
from model.ymt3 import YourMT3
|
20 |
+
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg
|
21 |
+
from config.vocabulary import drum_vocab_presets
|
22 |
+
from utils.utils import str2bool
|
23 |
+
|
24 |
+
# yapf: disable
|
25 |
+
parser = argparse.ArgumentParser(description="YourMT3")
|
26 |
+
# General
|
27 |
+
parser.add_argument('exp_id', type=str, help='A unique identifier for the experiment is used to resume training. The "@" symbol can be used to load a specific checkpoint.')
|
28 |
+
parser.add_argument('-p', '--project', type=str, default='ymt3', help='project name')
|
29 |
+
parser.add_argument('-d', '--data-preset', type=str, default='musicnet_thickstun_ext_em', help='dataset preset (default=musicnet_thickstun_ext_em). See config/data.py for more options.')
|
30 |
+
# Audio configurations
|
31 |
+
parser.add_argument('-ac', '--audio-codec', type=str, default=None, help='audio codec (default=None). {"spec", "melspec"}. If None, default value defined in config.py will be used.')
|
32 |
+
parser.add_argument('-hop', '--hop-length', type=int, default=None, help='hop length in frames (default=None). {128, 300} 128 for MT3, 300 for PerceiverTFIf None, default value defined in config.py will be used.')
|
33 |
+
parser.add_argument('-nmel', '--n-mels', type=int, default=None, help='number of mel bins (default=None). If None, default value defined in config.py will be used.')
|
34 |
+
parser.add_argument('-if', '--input-frames', type=int, default=None, help='number of audio frames for input segment (default=None). If None, default value defined in config.py will be used.')
|
35 |
+
# Model configurations
|
36 |
+
parser.add_argument('-sqr', '--sca-use-query-residual', type=str2bool, default=None, help='sca use query residual flag. Default follows config.py')
|
37 |
+
parser.add_argument('-enc', '--encoder-type', type=str, default=None, help="Encoder type. 't5' or 'perceiver-tf' or 'conformer'. Default is 't5', following config.py.")
|
38 |
+
parser.add_argument('-dec', '--decoder-type', type=str, default=None, help="Decoder type. 't5' or 'multi-t5'. Default is 't5', following config.py.")
|
39 |
+
parser.add_argument('-preenc', '--pre-encoder-type', type=str, default='default', help="Pre-encoder type. None or 'conv' or 'default'. By default, t5_enc:None, perceiver_tf_enc:conv, conformer:None")
|
40 |
+
parser.add_argument('-predec', '--pre-decoder-type', type=str, default='default', help="Pre-decoder type. {None, 'linear', 'conv1', 'mlp', 'group_linear'} or 'default'. Default is {'t5': None, 'perceiver-tf': 'linear', 'conformer': None}.")
|
41 |
+
parser.add_argument('-cout', '--conv-out-channels', type=int, default=None, help='Number of filters for pre-encoder conv layer. Default follows "model_cfg" of config.py.')
|
42 |
+
parser.add_argument('-tenc', '--task-cond-encoder', type=str2bool, default=True, help='task conditional encoder (default=True). True or False')
|
43 |
+
parser.add_argument('-tdec', '--task-cond-decoder', type=str2bool, default=True, help='task conditional decoder (default=True). True or False')
|
44 |
+
parser.add_argument('-df', '--d-feat', type=int, default=None, help='Audio feature will be projected to this dimension for Q,K,V of T5 or K,V of Perceiver (default=None). If None, default value defined in config.py will be used.')
|
45 |
+
parser.add_argument('-pt', '--pretrained', type=str2bool, default=False, help='pretrained T5(default=False). True or False')
|
46 |
+
parser.add_argument('-b', '--base-name', type=str, default="google/t5-v1_1-small", help='base model name (default="google/t5-v1_1-small")')
|
47 |
+
parser.add_argument('-epe', '--encoder-position-encoding-type', type=str, default='default', help="Positional encoding type of encoder. By default, pre-defined PE for T5 or Perceiver-TF encoder in config.py. For T5: {'sinusoidal', 'trainable'}, conformer: {'rotary', 'trainable'}, Perceiver-TF: {'trainable', 'rope', 'alibi', 'alibit', 'None', '0', 'none', 'tkd', 'td', 'tk', 'kdt'}.")
|
48 |
+
parser.add_argument('-dpe', '--decoder-position-encoding-type', type=str, default='default', help="Positional encoding type of decoder. By default, pre-defined PE for T5 in config.py. {'sinusoidal', 'trainable'}.")
|
49 |
+
parser.add_argument('-twe', '--tie-word-embedding', type=str2bool, default=None, help='tie word embedding (default=None). If None, default value defined in config.py will be used.')
|
50 |
+
parser.add_argument('-el', '--event-length', type=int, default=None, help='event length (default=None). If None, default value defined in model cfg of config.py will be used.')
|
51 |
+
# Perceiver-TF configurations
|
52 |
+
parser.add_argument('-dl', '--d-latent', type=int, default=None, help='Latent dimension of Perceiver. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
53 |
+
parser.add_argument('-nl', '--num-latents', type=int, default=None, help='Number of latents of Perceiver. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
54 |
+
parser.add_argument('-dpm', '--perceiver-tf-d-model', type=int, default=None, help='Perceiver-TF d_model (default=None). If None, default value defined in config.py will be used.')
|
55 |
+
parser.add_argument('-npb', '--num-perceiver-tf-blocks', type=int, default=None, help='Number of blocks of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py.')
|
56 |
+
parser.add_argument('-npl', '--num-perceiver-tf-local-transformers-per-block', type=int, default=None, help='Number of local layers per block of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
57 |
+
parser.add_argument('-npt', '--num-perceiver-tf-temporal-transformers-per-block', type=int, default=None, help='Number of temporal layers per block of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
58 |
+
parser.add_argument('-atc', '--attention-to-channel', type=str2bool, default=None, help='Attention to channel flag of Perceiver-TF. On T5, this will be ignored (default=None). If None, default value defined in config.py will be used.')
|
59 |
+
parser.add_argument('-ln', '--layer-norm-type', type=str, default=None, help='Layer normalization type (default=None). {"layer_norm", "rms_norm"}. If None, default value defined in config.py will be used.')
|
60 |
+
parser.add_argument('-ff', '--ff-layer-type', type=str, default=None, help='Feed forward layer type (default=None). {"mlp", "moe", "gmlp"}. If None, default value defined in config.py will be used.')
|
61 |
+
parser.add_argument('-wf', '--ff-widening-factor', type=int, default=None, help='Feed forward layer widening factor for MLP/MoE/gMLP (default=None). If None, default value defined in config.py will be used.')
|
62 |
+
parser.add_argument('-nmoe', '--moe-num-experts', type=int, default=None, help='Number of experts for MoE (default=None). If None, default value defined in config.py will be used.')
|
63 |
+
parser.add_argument('-kmoe', '--moe-topk', type=int, default=None, help='Top-k for MoE (default=None). If None, default value defined in config.py will be used.')
|
64 |
+
parser.add_argument('-act', '--hidden-act', type=str, default=None, help='Hidden activation function (default=None). {"gelu", "silu", "relu", "tanh"}. If None, default value defined in config.py will be used.')
|
65 |
+
parser.add_argument('-rt', '--rotary-type', type=str, default=None, help='Rotary embedding type expressed in three letters. e.g. ppl: "pixel" for SCA and latents, "lang" for temporal transformer. If None, use config.')
|
66 |
+
parser.add_argument('-rk', '--rope-apply-to-keys', type=str2bool, default=None, help='Apply rope to keys (default=None). If None, use config.')
|
67 |
+
parser.add_argument('-rp', '--rope-partial-pe', type=str2bool, default=None, help='Whether to apply RoPE to partial positions (default=None). If None, use config.')
|
68 |
+
# Decoder configurations
|
69 |
+
parser.add_argument('-dff', '--decoder-ff-layer-type', type=str, default=None, help='Feed forward layer type of decoder (default=None). {"mlp", "moe", "gmlp"}. If None, default value defined in config.py will be used.')
|
70 |
+
parser.add_argument('-dwf', '--decoder-ff-widening-factor', type=int, default=None, help='Feed forward layer widening factor for decoder MLP/MoE/gMLP (default=None). If None, default value defined in config.py will be used.')
|
71 |
+
# Task and Evaluation configurations
|
72 |
+
parser.add_argument('-tk', '--task', type=str, default='mt3_full_plus', help='tokenizer type (default=mt3_full_plus). See config/task.py for more options.')
|
73 |
+
parser.add_argument('-epv', '--eval-program-vocab', type=str, default=None, help='evaluation vocabulary (default=None). If None, default vocabulary of the data preset will be used.')
|
74 |
+
parser.add_argument('-edv', '--eval-drum-vocab', type=str, default=None, help='evaluation vocabulary for drum (default=None). If None, default vocabulary of the data preset will be used.')
|
75 |
+
parser.add_argument('-etk', '--eval-subtask-key', type=str, default='default', help='evaluation subtask key (default=default). See config/task.py for more options.')
|
76 |
+
parser.add_argument('-t', '--onset-tolerance', type=float, default=0.05, help='onset tolerance (default=0.05).')
|
77 |
+
parser.add_argument('-os', '--test-octave-shift', type=str2bool, default=False, help='test optimal octave shift (default=False). True or False')
|
78 |
+
parser.add_argument('-w', '--write-model-output', type=str2bool, default=False, help='write model test output to file (default=False). True or False')
|
79 |
+
# Trainer configurations
|
80 |
+
parser.add_argument('-pr','--precision', type=str, default="bf16-mixed", help='precision (default="bf16-mixed") {32, 16, bf16, bf16-mixed}')
|
81 |
+
parser.add_argument('-st', '--strategy', type=str, default='auto', help='strategy (default=auto). auto or deepspeed or ddp')
|
82 |
+
parser.add_argument('-n', '--num-nodes', type=int, default=1, help='number of nodes (default=1)')
|
83 |
+
parser.add_argument('-g', '--num-gpus', type=str, default='auto', help='number of gpus (default="auto")')
|
84 |
+
parser.add_argument('-wb', '--wandb-mode', type=str, default=None, help='wandb mode for logging (default=None). "disabled" or "online" or "offline". If None, default value defined in config.py will be used.')
|
85 |
+
# Debug
|
86 |
+
parser.add_argument('-debug', '--debug-mode', type=str2bool, default=False, help='debug mode (default=False). True or False')
|
87 |
+
parser.add_argument('-tps', '--test-pitch-shift', type=int, default=None, help='use pitch shift when testing. debug-purpose only. (default=None). semitone in int.')
|
88 |
+
args = parser.parse_args()
|
89 |
+
# yapf: enable
|
90 |
+
if torch.__version__ >= "1.13":
|
91 |
+
torch.set_float32_matmul_precision("high")
|
92 |
+
args.epochs = None
|
93 |
+
|
94 |
+
# Initialize trainer
|
95 |
+
trainer, wandb_logger, dir_info, shared_cfg = initialize_trainer(args, stage='test')
|
96 |
+
|
97 |
+
# Update config with args, including augmentation settings
|
98 |
+
shared_cfg, audio_cfg, model_cfg = update_config(args, shared_cfg, stage='test')
|
99 |
+
|
100 |
+
|
101 |
+
def main():
|
102 |
+
# Data preset
|
103 |
+
if args.data_preset in data_preset_single_cfg:
|
104 |
+
# convert single preset into multi preset format
|
105 |
+
data_preset = {
|
106 |
+
"presets": [args.data_preset],
|
107 |
+
"eval_vocab": data_preset_single_cfg[args.data_preset]["eval_vocab"],
|
108 |
+
}
|
109 |
+
for k in data_preset_single_cfg[args.data_preset].keys():
|
110 |
+
if k in ["eval_drum_vocab", "add_pitch_class_metric"]:
|
111 |
+
data_preset[k] = data_preset_single_cfg[args.data_preset][k]
|
112 |
+
elif args.data_preset in data_preset_multi_cfg:
|
113 |
+
data_preset = data_preset_multi_cfg[args.data_preset]
|
114 |
+
else:
|
115 |
+
raise ValueError("Invalid data preset")
|
116 |
+
eval_drum_vocab = data_preset.get("eval_drum_vocab", None)
|
117 |
+
|
118 |
+
if args.eval_drum_vocab != None: # override eval_drum_vocab
|
119 |
+
eval_drum_vocab = drum_vocab_presets[args.eval_drum_vocab]
|
120 |
+
|
121 |
+
# Task manager
|
122 |
+
tm = TaskManager(task_name=args.task,
|
123 |
+
max_shift_steps=int(shared_cfg["TOKENIZER"]["max_shift_steps"]),
|
124 |
+
debug_mode=args.debug_mode)
|
125 |
+
print(f"Task: {tm.task_name}, Max Shift Steps: {tm.max_shift_steps}")
|
126 |
+
|
127 |
+
results = []
|
128 |
+
for i, preset in enumerate(data_preset["presets"]):
|
129 |
+
# sdp: unpacking multi preset as a list of single presets
|
130 |
+
sdp = {
|
131 |
+
"presets": [preset],
|
132 |
+
"eval_vocab": [data_preset["eval_vocab"][i]],
|
133 |
+
"eval_drum_vocab": eval_drum_vocab,
|
134 |
+
}
|
135 |
+
for k in data_preset.keys():
|
136 |
+
if k not in ["presets", "eval_vocab"]:
|
137 |
+
sdp[k] = data_preset[k]
|
138 |
+
|
139 |
+
dm = AMTDataModule(data_preset_multi=sdp, task_manager=tm, audio_cfg=audio_cfg)
|
140 |
+
|
141 |
+
model = YourMT3(
|
142 |
+
audio_cfg=audio_cfg,
|
143 |
+
model_cfg=model_cfg,
|
144 |
+
shared_cfg=shared_cfg,
|
145 |
+
optimizer=None,
|
146 |
+
task_manager=tm, # tokenizer is a member of task_manager
|
147 |
+
eval_subtask_key=args.eval_subtask_key,
|
148 |
+
eval_vocab=args.eval_program_vocab if args.eval_program_vocab != None else sdp["eval_vocab"],
|
149 |
+
eval_drum_vocab=sdp["eval_drum_vocab"],
|
150 |
+
write_output_dir=dir_info["lightning_dir"] if args.write_model_output or args.test_octave_shift else None,
|
151 |
+
onset_tolerance=float(args.onset_tolerance),
|
152 |
+
add_pitch_class_metric=sdp.get("add_pitch_class_metric", None),
|
153 |
+
test_optimal_octave_shift=args.test_octave_shift,
|
154 |
+
test_pitch_shift_layer=args.test_pitch_shift)
|
155 |
+
|
156 |
+
# load checkpoint & drop pitchshift from state_dict
|
157 |
+
checkpoint = torch.load(dir_info["last_ckpt_path"])
|
158 |
+
state_dict = checkpoint['state_dict']
|
159 |
+
new_state_dict = {k: v for k, v in state_dict.items() if 'pitchshift' not in k}
|
160 |
+
model.load_state_dict(new_state_dict, strict=False)
|
161 |
+
# if args.test_pitch_shift is None:
|
162 |
+
# new_state_dict = {k: v for k, v in state_dict.items() if 'pitchshift' not in k}
|
163 |
+
# model.load_state_dict(new_state_dict, strict=False)
|
164 |
+
# else:
|
165 |
+
# model.load_state_dict(state_dict, strict=False)
|
166 |
+
|
167 |
+
results.append("-----------------------------------------------------------------")
|
168 |
+
results.append(sdp)
|
169 |
+
results.append(trainer.test(model, datamodule=dm))
|
170 |
+
# TODO: directly load checkpoint including hyperparmeters https://lightning.ai/docs/pytorch/1.6.2/common/hyperparameters.html
|
171 |
+
|
172 |
+
# save result
|
173 |
+
pp = pprint.PrettyPrinter(indent=4)
|
174 |
+
results_str = pp.pformat(results)
|
175 |
+
result_file = os.path.join(dir_info["lightning_dir"],
|
176 |
+
f"result_{args.task}_{args.eval_subtask_key}_{args.data_preset}.json")
|
177 |
+
with open(result_file, 'w') as f:
|
178 |
+
f.write(results_str)
|
179 |
+
print(f"Result is saved to {result_file}")
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
main()
|
tests/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
tests/assert_fns.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" assert_fn.py """
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def assert_notes_almost_equal(actual_notes, predicted_notes, delta=5e-3):
|
6 |
+
"""
|
7 |
+
Asserts that the given lists of Note instances are equal up to a small
|
8 |
+
floating-point tolerance, similar to `assertAlmostEqual` of `unittest`.
|
9 |
+
Tolerance is 5e-3 by default, which is 5 ms for 100 ticks-per-second.
|
10 |
+
"""
|
11 |
+
assert len(actual_notes) == len(predicted_notes)
|
12 |
+
for actual_note, predicted_note in zip(actual_notes, predicted_notes):
|
13 |
+
assert abs(actual_note.onset - predicted_note.onset) < delta
|
14 |
+
assert abs(actual_note.offset - predicted_note.offset) < delta
|
15 |
+
assert actual_note.pitch == predicted_note.pitch
|
16 |
+
if actual_note.is_drum is False and predicted_note.is_drum is False:
|
17 |
+
assert actual_note.program == predicted_note.program
|
18 |
+
assert actual_note.is_drum == predicted_note.is_drum
|
19 |
+
assert actual_note.velocity == predicted_note.velocity
|
20 |
+
|
21 |
+
|
22 |
+
def assert_note_events_almost_equal(actual_note_events,
|
23 |
+
predicted_note_events,
|
24 |
+
ignore_time=False,
|
25 |
+
ignore_activity=True,
|
26 |
+
delta=5.1e-3):
|
27 |
+
"""
|
28 |
+
Asserts that the given lists of Note instances are equal up to a small
|
29 |
+
floating-point tolerance, similar to `assertAlmostEqual` of `unittest`.
|
30 |
+
Tolerance is 5e-3 by default, which is 5 ms for 100 ticks-per-second.
|
31 |
+
|
32 |
+
If `ignore_time` is True, then the time field is ignored. (useful for
|
33 |
+
comparing tie note events, default is False)
|
34 |
+
|
35 |
+
If `ignore_activity` is True, then the activity field is ignored (default
|
36 |
+
is True).
|
37 |
+
"""
|
38 |
+
assert len(actual_note_events) == len(predicted_note_events)
|
39 |
+
for j, (actual_note_event,
|
40 |
+
predicted_note_event) in enumerate(zip(actual_note_events, predicted_note_events)):
|
41 |
+
if ignore_time is False:
|
42 |
+
assert abs(actual_note_event.time - predicted_note_event.time) <= delta
|
43 |
+
assert actual_note_event.is_drum == predicted_note_event.is_drum
|
44 |
+
if actual_note_event.is_drum is False and predicted_note_event.is_drum is False:
|
45 |
+
assert actual_note_event.program == predicted_note_event.program
|
46 |
+
assert actual_note_event.pitch == predicted_note_event.pitch
|
47 |
+
assert actual_note_event.velocity == predicted_note_event.velocity
|
48 |
+
if ignore_activity is False:
|
49 |
+
assert actual_note_event.activity == predicted_note_event.activity
|
50 |
+
|
51 |
+
|
52 |
+
def assert_track_metrics_score1(metrics) -> None:
|
53 |
+
for k, v in metrics.items():
|
54 |
+
if np.isnan(v) is False:
|
55 |
+
assert v == 1.0
|
tests/audio_test.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""audio_test.py"""
|
11 |
+
import unittest
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
import wave
|
15 |
+
import tempfile
|
16 |
+
from utils.audio import load_audio_file
|
17 |
+
from utils.audio import get_audio_file_info
|
18 |
+
from utils.audio import slice_padded_array
|
19 |
+
from utils.audio import slice_padded_array_for_subbatch
|
20 |
+
from utils.audio import write_wav_file
|
21 |
+
|
22 |
+
|
23 |
+
class TestLoadAudioFile(unittest.TestCase):
|
24 |
+
|
25 |
+
def create_temp_wav_file(self, duration: float, fs: int = 16000) -> str:
|
26 |
+
n_samples = int(duration * fs)
|
27 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
28 |
+
temp_filename = temp_file.name
|
29 |
+
|
30 |
+
data = np.random.randint(-2**15, 2**15, n_samples, dtype=np.int16)
|
31 |
+
|
32 |
+
with wave.open(temp_filename, 'wb') as f:
|
33 |
+
f.setnchannels(1)
|
34 |
+
f.setsampwidth(2)
|
35 |
+
f.setframerate(fs)
|
36 |
+
f.writeframes(data.tobytes())
|
37 |
+
|
38 |
+
return temp_filename
|
39 |
+
|
40 |
+
def test_load_audio_file(self):
|
41 |
+
duration = 3.0
|
42 |
+
fs = 16000
|
43 |
+
temp_filename = self.create_temp_wav_file(duration, fs)
|
44 |
+
|
45 |
+
# Test load entire file
|
46 |
+
audio_data = load_audio_file(temp_filename, dtype=np.int16)
|
47 |
+
file_fs, n_frames, n_channels = get_audio_file_info(temp_filename)
|
48 |
+
|
49 |
+
self.assertEqual(len(audio_data), n_frames)
|
50 |
+
self.assertEqual(file_fs, fs)
|
51 |
+
self.assertEqual(n_channels, 1)
|
52 |
+
|
53 |
+
# Test load specific segment
|
54 |
+
seg_start_sec = 1.0
|
55 |
+
seg_length_sec = 1.0
|
56 |
+
audio_data = load_audio_file(temp_filename, seg_start_sec, seg_length_sec, dtype=np.int16)
|
57 |
+
|
58 |
+
self.assertEqual(len(audio_data), int(seg_length_sec * fs))
|
59 |
+
|
60 |
+
# Test unsupported file extension
|
61 |
+
with self.assertRaises(NotImplementedError):
|
62 |
+
load_audio_file("unsupported.xyz")
|
63 |
+
|
64 |
+
|
65 |
+
class TestSliceArray(unittest.TestCase):
|
66 |
+
|
67 |
+
def setUp(self):
|
68 |
+
self.x = np.random.randint(0, 10, size=(1, 10000))
|
69 |
+
|
70 |
+
def test_without_padding(self):
|
71 |
+
sliced_x = slice_padded_array(self.x, slice_length=100, slice_hop=50, pad=False)
|
72 |
+
self.assertEqual(sliced_x.shape, (199, 100))
|
73 |
+
|
74 |
+
def test_with_padding(self):
|
75 |
+
sliced_x = slice_padded_array(self.x, slice_length=100, slice_hop=50, pad=True)
|
76 |
+
self.assertEqual(sliced_x.shape, (199, 100))
|
77 |
+
|
78 |
+
def test_content(self):
|
79 |
+
sliced_x = slice_padded_array(self.x, slice_length=100, slice_hop=50, pad=True)
|
80 |
+
for i in range(sliced_x.shape[0] - 1):
|
81 |
+
np.testing.assert_array_equal(sliced_x[i, :], self.x[:, i * 50:i * 50 + 100].flatten())
|
82 |
+
# Test the last slice separately to account for potential padding
|
83 |
+
last_slice = sliced_x[-1, :]
|
84 |
+
last_slice_no_padding = self.x[:, -100:].flatten()
|
85 |
+
np.testing.assert_array_equal(last_slice[:len(last_slice_no_padding)], last_slice_no_padding)
|
86 |
+
|
87 |
+
|
88 |
+
class TestSlicePadForSubbatch(unittest.TestCase):
|
89 |
+
|
90 |
+
def test_slice_padded_array_for_subbatch(self):
|
91 |
+
input_array = np.random.randn(6, 10)
|
92 |
+
slice_length = 4
|
93 |
+
slice_hop = 2
|
94 |
+
pad = True
|
95 |
+
sub_batch_size = 4
|
96 |
+
|
97 |
+
expected_output_shape = (4, 4)
|
98 |
+
|
99 |
+
# Call the slice_pad_for_subbatch function
|
100 |
+
result = slice_padded_array_for_subbatch(input_array, slice_length, slice_hop, pad, sub_batch_size)
|
101 |
+
|
102 |
+
# Check if the output shape is correct
|
103 |
+
self.assertEqual(result.shape, expected_output_shape)
|
104 |
+
|
105 |
+
# Check if the number of slices is divisible by sub_batch_size
|
106 |
+
self.assertEqual(result.shape[0] % sub_batch_size, 0)
|
107 |
+
|
108 |
+
|
109 |
+
class TestWriteWavFile(unittest.TestCase):
|
110 |
+
|
111 |
+
def test_write_wav_file_z(self):
|
112 |
+
# Generate some test audio data
|
113 |
+
samplerate = 16000
|
114 |
+
duration = 1 # 1 second
|
115 |
+
t = np.linspace(0, duration, int(samplerate * duration), endpoint=False)
|
116 |
+
x = np.sin(2 * np.pi * 440 * t)
|
117 |
+
|
118 |
+
# Write the test audio data to a WAV file
|
119 |
+
filename = "extras/test.wav"
|
120 |
+
write_wav_file(filename, x, samplerate)
|
121 |
+
|
122 |
+
# Read the written WAV file and check its contents
|
123 |
+
with wave.open(filename, "rb") as wav_file:
|
124 |
+
# Check the WAV file parameters
|
125 |
+
self.assertEqual(wav_file.getnchannels(), 1)
|
126 |
+
self.assertEqual(wav_file.getsampwidth(), 2)
|
127 |
+
self.assertEqual(wav_file.getframerate(), samplerate)
|
128 |
+
self.assertEqual(wav_file.getnframes(), len(x))
|
129 |
+
|
130 |
+
# Read the audio samples from the WAV file
|
131 |
+
data = wav_file.readframes(len(x))
|
132 |
+
|
133 |
+
# Convert the audio sample byte string to a NumPy array and normalize it to the range [-1, 1]
|
134 |
+
x_read = np.frombuffer(data, dtype=np.int16) / 32767.0
|
135 |
+
|
136 |
+
# Check that the audio samples read from the WAV file are equal to the original audio samples
|
137 |
+
np.testing.assert_allclose(x_read, x, atol=1e-4)
|
138 |
+
|
139 |
+
# Delete the written WAV file
|
140 |
+
os.remove(filename)
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == '__main__':
|
144 |
+
unittest.main()
|
tests/event2note_test.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""event2midi_test.py:
|
11 |
+
|
12 |
+
This file contains tests for the following classes:
|
13 |
+
• event2note_event
|
14 |
+
• note_event2note
|
15 |
+
|
16 |
+
"""
|
17 |
+
import unittest
|
18 |
+
import pytest
|
19 |
+
from numpy import random
|
20 |
+
from assert_fns import assert_notes_almost_equal
|
21 |
+
from utils.note_event_dataclasses import Event, Note, NoteEvent
|
22 |
+
from utils.event2note import event2note_event
|
23 |
+
from utils.event2note import note_event2note
|
24 |
+
|
25 |
+
|
26 |
+
# yapf: disable
|
27 |
+
class TestEvent2NoteEvent(unittest.TestCase):
|
28 |
+
def test_event2note_event(self):
|
29 |
+
events = [
|
30 |
+
Event('program', 33), Event('pitch', 60),
|
31 |
+
Event('program', 52), Event('pitch', 40),
|
32 |
+
Event('tie', 0),
|
33 |
+
Event('shift', 20), Event('velocity', 1), Event('drum', 36),
|
34 |
+
Event('shift', 150), Event('program', 33), Event('velocity', 0), Event('pitch', 60),
|
35 |
+
Event('shift', 160), Event('velocity', 1), Event('pitch', 62), Event('program', 100),
|
36 |
+
Event('pitch', 77),
|
37 |
+
Event('shift', 200), Event('velocity', 0), Event('pitch', 77),
|
38 |
+
Event('shift', 250), Event('velocity', 1), Event('drum', 38),
|
39 |
+
Event('shift', 300), Event('velocity', 0), Event('program', 33), Event('pitch', 62)
|
40 |
+
]
|
41 |
+
|
42 |
+
note_events, tie_note_events, last_activity, err_cnt = event2note_event(events, start_time=0, sort=False, tps=100)
|
43 |
+
self.assertEqual(len(err_cnt), 0)
|
44 |
+
expected_note_events = [NoteEvent(True, 128, 0.2, 1, 36),
|
45 |
+
NoteEvent(False, 33, 1.5, 0, 60),
|
46 |
+
NoteEvent(False, 33, 1.6, 1, 62),
|
47 |
+
NoteEvent(False, 100, 1.6, 1, 77),
|
48 |
+
NoteEvent(False, 100, 2.0, 0, 77),
|
49 |
+
NoteEvent(True, 128, 2.5, 1, 38),
|
50 |
+
NoteEvent(False, 33, 3.0, 0, 62)]
|
51 |
+
expected_tie_note_events = [NoteEvent(False, 33, None, 1, 60),
|
52 |
+
NoteEvent(False, 52, None, 1, 40)]
|
53 |
+
expected_last_activity = [(52, 40)]
|
54 |
+
self.assertSequenceEqual(note_events, expected_note_events)
|
55 |
+
self.assertSequenceEqual(tie_note_events, expected_tie_note_events)
|
56 |
+
self.assertSequenceEqual(last_activity, expected_last_activity)
|
57 |
+
|
58 |
+
class TestEvent2NoteEventInvalidInputWarn(unittest.TestCase):
|
59 |
+
def test_event2note_event_with_invalid_shift_value(self):
|
60 |
+
events = [Event('tie', 0), Event('shift', 0), Event('shift', 1050)] # shift: 0 <= value <= 1000
|
61 |
+
_, _, _, err_cnt = event2note_event(events, start_time=0, sort=True, tps=100)
|
62 |
+
self.assertEqual(err_cnt['Err/Shift out of range'], 2)
|
63 |
+
|
64 |
+
def test_event2note_event_with_invalid_pitch_event(self):
|
65 |
+
events = [Event('pitch', 60), Event('tie', 0)] # pitch event must follow a program event
|
66 |
+
_, _, _, err_cnt = event2note_event(events, start_time=0, sort=True, tps=100)
|
67 |
+
self.assertEqual(err_cnt['Err/Missing prg in tie'], 1)
|
68 |
+
|
69 |
+
def test_event2note_event_with_invalid_tie_event(self):
|
70 |
+
events = [Event('shift', 10)]
|
71 |
+
_, _, _, err_cnt = event2note_event(events, start_time=0, sort=True, tps=100)
|
72 |
+
self.assertEqual(err_cnt['Err/Missing tie'], 1)
|
73 |
+
|
74 |
+
class TestEvent2NoteEventSpecialEvent(unittest.TestCase):
|
75 |
+
def test_note_event2note_special_events(self):
|
76 |
+
events = [Event('program', 33), Event('pitch', 60),
|
77 |
+
Event('tie', 0),
|
78 |
+
Event('shift', 10), Event('program', 33), Event('velocity', 0), Event('pitch', 60),
|
79 |
+
Event('EOS', 0), Event('PAD', 0), # <- will stop decoding at this point...
|
80 |
+
Event('shift', 20), Event('velocity', 1), Event('pitch', 20),
|
81 |
+
Event('shift', 30), Event('velocity', 1), Event('pitch', 20),]
|
82 |
+
note_events, tie_note_events, _, err_cnt = event2note_event(events, start_time=0)
|
83 |
+
print(note_events)
|
84 |
+
self.assertEqual(len(note_events), 1)
|
85 |
+
self.assertEqual(len(tie_note_events), 1)
|
86 |
+
self.assertEqual(len(err_cnt), 0)
|
87 |
+
|
88 |
+
|
89 |
+
class TestNoteEvent2Note(unittest.TestCase):
|
90 |
+
|
91 |
+
def test_note_event2note(self):
|
92 |
+
|
93 |
+
note_events = [NoteEvent(is_drum=False, program=33, time=0, velocity=1, pitch=60),
|
94 |
+
NoteEvent(is_drum=False, program=33, time=1.5, velocity=0, pitch=60),
|
95 |
+
NoteEvent(is_drum=False, program=33, time=1.6, velocity=1, pitch=62),
|
96 |
+
NoteEvent(is_drum=False, program=33, time=3.0, velocity=0, pitch=62),
|
97 |
+
NoteEvent(is_drum=False, program=100, time=1.6, velocity=1, pitch=77),
|
98 |
+
NoteEvent(is_drum=False, program=100, time=2.0, velocity=0, pitch=77),
|
99 |
+
NoteEvent(is_drum=True, program=128, time=0.2, velocity=1, pitch=36),
|
100 |
+
NoteEvent(is_drum=True, program=128, time=2.5, velocity=1, pitch=38)
|
101 |
+
]
|
102 |
+
notes, err_cnt = note_event2note(note_events, sort=True)
|
103 |
+
|
104 |
+
expected_notes = [
|
105 |
+
Note(is_drum=False, program=33, onset=0, offset=1.5, pitch=60, velocity=1),
|
106 |
+
Note(is_drum=True, program=128, onset=0.2, offset=0.21, pitch=36, velocity=1),
|
107 |
+
Note(is_drum=False, program=33, onset=1.6, offset=3.0, pitch=62, velocity=1),
|
108 |
+
Note(is_drum=False, program=100, onset=1.6, offset=2.0, pitch=77, velocity=1),
|
109 |
+
Note(is_drum=True, program=128, onset=2.5, offset=2.51, pitch=38, velocity=1)
|
110 |
+
]
|
111 |
+
self.assertEqual(len(err_cnt), 0)
|
112 |
+
assert_notes_almost_equal(notes, expected_notes, delta=5e-3)
|
113 |
+
|
114 |
+
|
115 |
+
def test_note_event2note_simple_cases(self):
|
116 |
+
# Case 1: Basic test case with two notes
|
117 |
+
note_events = [
|
118 |
+
NoteEvent(is_drum=False, program=0, time=0.1, velocity=1, pitch=60),
|
119 |
+
NoteEvent(is_drum=False, program=0, time=0.5, velocity=0, pitch=60),
|
120 |
+
NoteEvent(is_drum=False, program=0, time=0.7, velocity=1, pitch=62),
|
121 |
+
NoteEvent(is_drum=False, program=0, time=1.5, velocity=0, pitch=62),
|
122 |
+
]
|
123 |
+
|
124 |
+
expected_notes = [
|
125 |
+
Note(is_drum=False, program=0, onset=0.1, offset=0.5, pitch=60, velocity=1),
|
126 |
+
Note(is_drum=False, program=0, onset=0.7, offset=1.5, pitch=62, velocity=1),
|
127 |
+
]
|
128 |
+
notes, err_cnt = note_event2note(note_events)
|
129 |
+
self.assertEqual(len(err_cnt), 0)
|
130 |
+
self.assertSequenceEqual(notes, expected_notes)
|
131 |
+
|
132 |
+
# Case 2: Test with drum notes
|
133 |
+
note_events = [
|
134 |
+
NoteEvent(is_drum=True, program=128, time=0.2, velocity=1, pitch=36),
|
135 |
+
NoteEvent(is_drum=True, program=128, time=0.3, velocity=1, pitch=38),
|
136 |
+
NoteEvent(is_drum=True, program=128, time=0.4, velocity=0, pitch=36),
|
137 |
+
NoteEvent(is_drum=True, program=128, time=0.5, velocity=0, pitch=38),
|
138 |
+
]
|
139 |
+
|
140 |
+
expected_notes = [
|
141 |
+
Note(is_drum=True, program=128, onset=0.2, offset=0.21, pitch=36, velocity=1),
|
142 |
+
Note(is_drum=True, program=128, onset=0.3, offset=0.31, pitch=38, velocity=1),
|
143 |
+
]
|
144 |
+
notes, err_cnt = note_event2note(note_events)
|
145 |
+
self.assertEqual(len(err_cnt), 0)
|
146 |
+
assert_notes_almost_equal(notes, expected_notes, delta=5.1e-3)
|
147 |
+
|
148 |
+
|
149 |
+
def test_note_event2note_multiple_overlapping_notes(self):
|
150 |
+
|
151 |
+
note_events = [
|
152 |
+
NoteEvent(is_drum=False, program=1, time=0.0, velocity=1, pitch=60),
|
153 |
+
NoteEvent(is_drum=False, program=1, time=0.5, velocity=0, pitch=60),
|
154 |
+
NoteEvent(is_drum=False, program=1, time=1.0, velocity=1, pitch=62),
|
155 |
+
NoteEvent(is_drum=False, program=1, time=1.5, velocity=0, pitch=62),
|
156 |
+
NoteEvent(is_drum=False, program=2, time=0.25, velocity=1, pitch=60),
|
157 |
+
NoteEvent(is_drum=False, program=2, time=0.75, velocity=0, pitch=60),
|
158 |
+
NoteEvent(is_drum=False, program=2, time=1.25, velocity=1, pitch=62),
|
159 |
+
NoteEvent(is_drum=False, program=2, time=1.75, velocity=0, pitch=62),
|
160 |
+
NoteEvent(is_drum=False, program=3, time=0.0, velocity=1, pitch=64),
|
161 |
+
NoteEvent(is_drum=False, program=3, time=1.0, velocity=0, pitch=64),
|
162 |
+
NoteEvent(is_drum=False, program=4, time=0.5, velocity=1, pitch=66),
|
163 |
+
NoteEvent(is_drum=False, program=4, time=1.5, velocity=0, pitch=66),
|
164 |
+
NoteEvent(is_drum=False, program=4, time=0.75, velocity=1, pitch=67),
|
165 |
+
NoteEvent(is_drum=False, program=4, time=1.75, velocity=0, pitch=67),
|
166 |
+
NoteEvent(is_drum=False, program=4, time=1.0, velocity=1, pitch=69),
|
167 |
+
NoteEvent(is_drum=False, program=4, time=2.0, velocity=0, pitch=69)
|
168 |
+
]
|
169 |
+
|
170 |
+
expected_notes = [
|
171 |
+
Note(is_drum=False, program=1, onset=0.0, offset=0.5, pitch=60, velocity=1),
|
172 |
+
Note(is_drum=False, program=3, onset=0.0, offset=1.0, pitch=64, velocity=1),
|
173 |
+
Note(is_drum=False, program=2, onset=0.25, offset=0.75, pitch=60, velocity=1),
|
174 |
+
Note(is_drum=False, program=4, onset=0.5, offset=1.5, pitch=66, velocity=1),
|
175 |
+
Note(is_drum=False, program=4, onset=0.75, offset=1.75, pitch=67, velocity=1),
|
176 |
+
Note(is_drum=False, program=1, onset=1.0, offset=1.5, pitch=62, velocity=1),
|
177 |
+
Note(is_drum=False, program=4, onset=1.0, offset=2.0, pitch=69, velocity=1),
|
178 |
+
Note(is_drum=False, program=2, onset=1.25, offset=1.75, pitch=62, velocity=1)
|
179 |
+
]
|
180 |
+
|
181 |
+
notes, err_cnt = note_event2note(note_events)
|
182 |
+
self.assertEqual(len(err_cnt), 0)
|
183 |
+
assert_notes_almost_equal(notes, expected_notes, delta=5e-3)
|
184 |
+
|
185 |
+
# yapf: enable
|
186 |
+
if __name__ == '__main__':
|
187 |
+
unittest.main()
|
tests/event_codec_test.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""event_codec_test.py:
|
11 |
+
|
12 |
+
This file contains tests for the following classes:
|
13 |
+
• Event
|
14 |
+
• EventRange
|
15 |
+
• FastCodec equivalent to MT3 author's Codec
|
16 |
+
|
17 |
+
See tokenizer_test.py for the FastCodec performance benchmark
|
18 |
+
|
19 |
+
"""
|
20 |
+
import unittest
|
21 |
+
from utils.note_event_dataclasses import Event, EventRange
|
22 |
+
from utils.event_codec import FastCodec as Codec
|
23 |
+
# from utils.event_codec import Codec
|
24 |
+
|
25 |
+
|
26 |
+
class TestEvent(unittest.TestCase):
|
27 |
+
|
28 |
+
def test_Event(self):
|
29 |
+
e = Event(type='shift', value=0)
|
30 |
+
self.assertEqual(e.type, 'shift')
|
31 |
+
self.assertEqual(e.value, 0)
|
32 |
+
|
33 |
+
|
34 |
+
class TestEventRange(unittest.TestCase):
|
35 |
+
|
36 |
+
def test_EventRange(self):
|
37 |
+
er = EventRange('abc', min_value=0, max_value=500)
|
38 |
+
self.assertEqual(er.type, 'abc')
|
39 |
+
self.assertEqual(er.min_value, 0)
|
40 |
+
self.assertEqual(er.max_value, 500)
|
41 |
+
|
42 |
+
|
43 |
+
class TestEventCodec(unittest.TestCase):
|
44 |
+
|
45 |
+
def test_event_codec(self):
|
46 |
+
ec = Codec(
|
47 |
+
special_tokens=['asd'],
|
48 |
+
max_shift_steps=1001,
|
49 |
+
event_ranges=[
|
50 |
+
EventRange('pitch', min_value=0, max_value=127),
|
51 |
+
EventRange('velocity', min_value=0, max_value=1),
|
52 |
+
EventRange('tie', min_value=0, max_value=0),
|
53 |
+
EventRange('program', min_value=0, max_value=127),
|
54 |
+
EventRange('drum', min_value=0, max_value=127),
|
55 |
+
],
|
56 |
+
)
|
57 |
+
|
58 |
+
events = [
|
59 |
+
Event(type='shift', value=0), # actually not needed
|
60 |
+
Event(type='shift', value=1), # 10 ms shift
|
61 |
+
Event(type='shift', value=1000), # 10 s shift
|
62 |
+
Event(type='pitch', value=0), # lowest pitch 8.18 Hz
|
63 |
+
Event(type='pitch', value=60), # C4 or 261.63 Hz
|
64 |
+
Event(type='pitch', value=127), # highest pitch G9 or 12543.85 Hz
|
65 |
+
Event(type='velocity', value=0), # lowest velocity)
|
66 |
+
Event(type='velocity', value=1), # lowest velocity)
|
67 |
+
Event(type='tie', value=0), # tie
|
68 |
+
Event(type='program', value=0), # program
|
69 |
+
Event(type='program', value=127), # program
|
70 |
+
Event(type='drum', value=0), # drum
|
71 |
+
Event(type='drum', value=127), # drum
|
72 |
+
]
|
73 |
+
|
74 |
+
encoded = [ec.encode_event(e) for e in events]
|
75 |
+
decoded = [ec.decode_event_index(idx) for idx in encoded]
|
76 |
+
self.assertSequenceEqual(events, decoded)
|
77 |
+
|
78 |
+
|
79 |
+
class TestEventCodecErrorCases(unittest.TestCase):
|
80 |
+
|
81 |
+
def setUp(self):
|
82 |
+
self.event_ranges = [
|
83 |
+
EventRange("program", 0, 127),
|
84 |
+
EventRange("pitch", 0, 127),
|
85 |
+
EventRange("velocity", 0, 3),
|
86 |
+
EventRange("drum", 0, 127),
|
87 |
+
EventRange("tie", 0, 1),
|
88 |
+
]
|
89 |
+
self.ec = Codec([], 1000, self.event_ranges)
|
90 |
+
|
91 |
+
def test_encode_event_with_invalid_event_type(self):
|
92 |
+
with self.assertRaises(ValueError):
|
93 |
+
self.ec.encode_event(Event("unknown_event_type", 50))
|
94 |
+
|
95 |
+
def test_encode_event_with_invalid_event_value(self):
|
96 |
+
with self.assertRaises(ValueError):
|
97 |
+
self.ec.encode_event(Event("program", 200))
|
98 |
+
|
99 |
+
def test_event_type_range_with_invalid_event_type(self):
|
100 |
+
with self.assertRaises(ValueError):
|
101 |
+
self.ec.event_type_range("unknown_event_type")
|
102 |
+
|
103 |
+
def test_decode_event_index_with_invalid_index(self):
|
104 |
+
with self.assertRaises(ValueError):
|
105 |
+
self.ec.decode_event_index(1000000)
|
106 |
+
|
107 |
+
|
108 |
+
class TestEventCodecVocabulary(unittest.TestCase):
|
109 |
+
|
110 |
+
def test_encode_event_using_program_vocabulary(self):
|
111 |
+
prog_vocab = {"Piano": [0, 1, 2, 3, 4, 5, 6, 7], "xxx": [50, 30, 120]}
|
112 |
+
ec = Codec(special_tokens=['asd'],
|
113 |
+
max_shift_steps=1001,
|
114 |
+
event_ranges=[
|
115 |
+
EventRange('pitch', min_value=0, max_value=127),
|
116 |
+
EventRange('velocity', min_value=0, max_value=1),
|
117 |
+
EventRange('tie', min_value=0, max_value=0),
|
118 |
+
EventRange('program', min_value=0, max_value=127),
|
119 |
+
EventRange('drum', min_value=0, max_value=127),
|
120 |
+
],
|
121 |
+
program_vocabulary=prog_vocab)
|
122 |
+
|
123 |
+
events = [
|
124 |
+
Event(type='program', value=0), # 0 --> 0
|
125 |
+
Event(type='program', value=7), # 7 --> 0
|
126 |
+
Event(type='program', value=111), # 111 --> 111
|
127 |
+
Event(type='program', value=30), # 30 --> 50
|
128 |
+
]
|
129 |
+
encoded = [ec.encode_event(e) for e in events]
|
130 |
+
expected = [1133, 1133, 1244, 1183]
|
131 |
+
self.assertSequenceEqual(encoded, expected)
|
132 |
+
|
133 |
+
def test_encode_event_using_drum_vocabulary(self):
|
134 |
+
drum_vocab = {"Kick": [50, 51, 52], "Snare": [53, 54]}
|
135 |
+
ec = Codec(special_tokens=['asd'],
|
136 |
+
max_shift_steps=1001,
|
137 |
+
event_ranges=[
|
138 |
+
EventRange('pitch', min_value=0, max_value=127),
|
139 |
+
EventRange('velocity', min_value=0, max_value=1),
|
140 |
+
EventRange('tie', min_value=0, max_value=0),
|
141 |
+
EventRange('program', min_value=0, max_value=127),
|
142 |
+
EventRange('drum', min_value=0, max_value=127),
|
143 |
+
],
|
144 |
+
drum_vocabulary=drum_vocab)
|
145 |
+
|
146 |
+
events = [
|
147 |
+
Event(type='drum', value=50),
|
148 |
+
Event(type='drum', value=51),
|
149 |
+
Event(type='drum', value=53),
|
150 |
+
Event(type='drum', value=54),
|
151 |
+
]
|
152 |
+
encoded = [ec.encode_event(e) for e in events]
|
153 |
+
self.assertEqual(encoded[0], encoded[1])
|
154 |
+
self.assertEqual(encoded[2], encoded[3])
|
155 |
+
|
156 |
+
|
157 |
+
if __name__ == '__main__':
|
158 |
+
unittest.main()
|
tests/metrics_test.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""metrics_test.py:
|
11 |
+
|
12 |
+
This file contains tests for the following classes:
|
13 |
+
• AMTMetrics
|
14 |
+
|
15 |
+
"""
|
16 |
+
import unittest
|
17 |
+
import warnings
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
from utils.metrics import AMTMetrics
|
21 |
+
from utils.metrics import compute_track_metrics
|
22 |
+
|
23 |
+
|
24 |
+
class TestAMTMetrics(unittest.TestCase):
|
25 |
+
|
26 |
+
def test_individual_attributes(self):
|
27 |
+
metric = AMTMetrics()
|
28 |
+
|
29 |
+
# Test updating the metric using .update() method
|
30 |
+
metric.onset_f.update(0.5)
|
31 |
+
|
32 |
+
# Test updating the metric using __call__() method
|
33 |
+
metric.onset_f(0.5)
|
34 |
+
|
35 |
+
# Test updating the metric with a weight
|
36 |
+
metric.onset_f(0, weight=1.0)
|
37 |
+
|
38 |
+
# Test computing the average value of the metric
|
39 |
+
computed_value = metric.onset_f.compute()
|
40 |
+
self.assertAlmostEqual(computed_value, 0.3333333333333333)
|
41 |
+
|
42 |
+
# Test resetting the metric
|
43 |
+
metric.onset_f.reset()
|
44 |
+
with self.assertWarns(UserWarning):
|
45 |
+
torch._assert(metric.onset_f.compute(), torch.nan)
|
46 |
+
|
47 |
+
# Test bulk_compute
|
48 |
+
with self.assertWarns(UserWarning):
|
49 |
+
computed_metrics = metric.bulk_compute()
|
50 |
+
|
51 |
+
def test_bulk_update_and_compute(self):
|
52 |
+
metric = AMTMetrics()
|
53 |
+
|
54 |
+
# Test bulk_update with values only
|
55 |
+
d1 = {'onset_f': 0.5, 'offset_f': 0.5}
|
56 |
+
metric.bulk_update(d1)
|
57 |
+
|
58 |
+
# Test bulk_update with values and weights
|
59 |
+
d2 = {'onset_f': {'value': 0.5, 'weight': 1.0}, 'offset_f': {'value': 0.5, 'weight': 1.0}}
|
60 |
+
metric.bulk_update(d2)
|
61 |
+
|
62 |
+
# Test bulk_compute
|
63 |
+
computed_metrics = metric.bulk_compute()
|
64 |
+
|
65 |
+
# Ensure the 'onset_f' and 'offset_f' keys exist in the computed_metrics dictionary
|
66 |
+
self.assertIn('onset_f', computed_metrics)
|
67 |
+
self.assertIn('offset_f', computed_metrics)
|
68 |
+
|
69 |
+
# Check the computed values
|
70 |
+
self.assertAlmostEqual(computed_metrics['onset_f'], 0.5)
|
71 |
+
self.assertAlmostEqual(computed_metrics['offset_f'], 0.5)
|
72 |
+
|
73 |
+
def test_compute_track_metrics_singing(self):
|
74 |
+
from config.vocabulary import SINGING_SOLO_CLASS, GM_INSTR_CLASS_PLUS
|
75 |
+
from utils.event2note import note_event2note
|
76 |
+
|
77 |
+
ref_notes_dict = np.load('extras/examples/singing_notes.npy', allow_pickle=True).tolist()
|
78 |
+
ref_note_events_dict = np.load('extras/examples/singing_note_events.npy', allow_pickle=True).tolist()
|
79 |
+
est_notes, _ = note_event2note(ref_note_events_dict['note_events'])
|
80 |
+
ref_notes = ref_notes_dict['notes']
|
81 |
+
|
82 |
+
metric = AMTMetrics(prefix=f'test/', extra_classes=[k for k in SINGING_SOLO_CLASS.keys()])
|
83 |
+
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(est_notes,
|
84 |
+
ref_notes,
|
85 |
+
eval_vocab=SINGING_SOLO_CLASS,
|
86 |
+
eval_drum_vocab=None,
|
87 |
+
onset_tolerance=0.05)
|
88 |
+
metric.bulk_update(drum_metric)
|
89 |
+
metric.bulk_update(non_drum_metric)
|
90 |
+
metric.bulk_update(instr_metric)
|
91 |
+
computed_metrics = metric.bulk_compute()
|
92 |
+
cnt = 0
|
93 |
+
for k, v in computed_metrics.items():
|
94 |
+
if 'Singing Voice' in k:
|
95 |
+
self.assertEqual(v, 1.0)
|
96 |
+
cnt += 1
|
97 |
+
self.assertEqual(cnt, 6)
|
98 |
+
|
99 |
+
metric = AMTMetrics(prefix=f'test/', extra_classes=[k for k in GM_INSTR_CLASS_PLUS.keys()])
|
100 |
+
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(est_notes,
|
101 |
+
ref_notes,
|
102 |
+
eval_vocab=GM_INSTR_CLASS_PLUS,
|
103 |
+
eval_drum_vocab=None,
|
104 |
+
onset_tolerance=0.05)
|
105 |
+
metric.bulk_update(drum_metric)
|
106 |
+
metric.bulk_update(non_drum_metric)
|
107 |
+
metric.bulk_update(instr_metric)
|
108 |
+
computed_metrics = metric.bulk_compute()
|
109 |
+
cnt = 0
|
110 |
+
for k, v in computed_metrics.items():
|
111 |
+
if 'Singing Voice' in k:
|
112 |
+
self.assertEqual(v, 1.0)
|
113 |
+
cnt += 1
|
114 |
+
self.assertEqual(cnt, 6)
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == '__main__':
|
118 |
+
unittest.main()
|
tests/midi_test.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from typing import List
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
+
from assert_fns import assert_notes_almost_equal
|
5 |
+
from utils.note_event_dataclasses import Note
|
6 |
+
|
7 |
+
from utils.midi import note_event2midi
|
8 |
+
from utils.midi import midi2note
|
9 |
+
from utils.note2event import note2note_event
|
10 |
+
# yapf: disable
|
11 |
+
|
12 |
+
class TestNoteMidiConversion(unittest.TestCase):
|
13 |
+
|
14 |
+
def test_note2midi2note_z(self):
|
15 |
+
original_notes = [
|
16 |
+
Note(is_drum=False, program=3, onset=0., offset=1., pitch=60, velocity=1),
|
17 |
+
Note(is_drum=False, program=3, onset=1., offset=2., pitch=64, velocity=1),
|
18 |
+
]
|
19 |
+
|
20 |
+
with NamedTemporaryFile(suffix=".mid", delete=True) as temp_file:
|
21 |
+
# Convert original_notes to MIDI and save it to the temporary file
|
22 |
+
note_events = note2note_event(notes=original_notes, sort=True)
|
23 |
+
note_event2midi(note_events, temp_file.name, velocity=100)
|
24 |
+
|
25 |
+
# Convert the MIDI back to notes
|
26 |
+
converted_notes, _ = midi2note(temp_file.name)
|
27 |
+
|
28 |
+
# Compare original notes and converted notes
|
29 |
+
assert_notes_almost_equal(original_notes, converted_notes)
|
30 |
+
|
31 |
+
def test_midi2note2midi2note_piano_z(self):
|
32 |
+
file = 'extras/examples/piano.mid'
|
33 |
+
# This MIDI file is missing the program change event, so we force it to be 0
|
34 |
+
notes, _ = midi2note(file, quantize=False, force_all_program_to=0)[:1000]
|
35 |
+
note_events = note2note_event(notes=notes, sort=True)
|
36 |
+
note_event2midi(note_events, 'extras/examples/piano_converted.mid', velocity=100)
|
37 |
+
reconverted_notes, _ = midi2note('extras/examples/piano_converted.mid', quantize=False)
|
38 |
+
assert_notes_almost_equal(notes, reconverted_notes, delta=0.01)
|
39 |
+
|
40 |
+
def test_midi2note2midi2note_force_drum_z(self):
|
41 |
+
file = 'extras/examples/drum.mid'
|
42 |
+
conv_file = 'extras/examples/drum_converted.mid'
|
43 |
+
# This MIDI file is missing the program change event, so we force it to be 0
|
44 |
+
notes, _ = midi2note(file, quantize=True, force_all_drum=True)[:100]
|
45 |
+
note_events = note2note_event(notes=notes, sort=True)
|
46 |
+
note_event2midi(note_events, conv_file, velocity=100, ticks_per_beat=960)
|
47 |
+
reconverted_notes, _ = midi2note(conv_file, quantize=True, force_all_drum=True)
|
48 |
+
assert_notes_almost_equal(notes, reconverted_notes, delta=0.005)
|
49 |
+
|
50 |
+
# In drum, this is very inaccurate. We should fix this in the future.
|
51 |
+
# Even for the first 100 notes, the timing is off by 170 ms.
|
52 |
+
|
53 |
+
def test_midi2note_ignore_pedal_true_z(self):
|
54 |
+
file = 'extras/examples/piano.mid'
|
55 |
+
notes, _ = midi2note(file, quantize=False, ignore_pedal=True, force_all_program_to=0)
|
56 |
+
note_events = note2note_event(notes=notes, sort=True)
|
57 |
+
note_event2midi(note_events, 'extras/examples/piano_converted.mid', velocity=100)
|
58 |
+
reconverted_notes, _ = midi2note('extras/examples/piano_converted.mid', quantize=False)
|
59 |
+
assert_notes_almost_equal(notes, reconverted_notes, delta=0.01)
|
60 |
+
|
61 |
+
|
62 |
+
# yapf: enable
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
unittest.main()
|