Datasets:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# WiCount
|
| 2 |
+
|
| 3 |
+
The description is generated by Grok3.
|
| 4 |
+
|
| 5 |
+
## Dataset Description
|
| 6 |
+
|
| 7 |
+
- **Repository:** [CSI-BERT2/WiCount at main · RS2002/CSI-BERT2](https://github.com/RS2002/CSI-BERT2/tree/main/WiCount)
|
| 8 |
+
- **Paper:** [CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing](https://arxiv.org/abs/2412.06861)
|
| 9 |
+
- **Contact:** [[email protected]](mailto:[email protected])
|
| 10 |
+
- **Collectors:** Zijian Zhao, Tingwei Chen
|
| 11 |
+
- **Organization:** AI-RAN Lab (hosted by Prof. Guangxu Zhu) in SRIBD, CUHK(SZ)
|
| 12 |
+
- **Dataset Summary:**
|
| 13 |
+
The WiCount dataset contains synchronized Channel State Information (CSI), Received Signal Strength Indicator (RSSI), and timestamp data collected using ESP32-S3 devices for WiFi-based people number estimation in a meeting room scenario. The dataset includes samples for estimating the number of people (0–3) in the environment.
|
| 14 |
+
- **Tasks:** People Number Estimation
|
| 15 |
+
|
| 16 |
+
## Dataset Structure
|
| 17 |
+
|
| 18 |
+
### Data Instances
|
| 19 |
+
|
| 20 |
+
Each instance is a `.csv` file representing a 60-second sample with the following columns:
|
| 21 |
+
|
| 22 |
+
- **seq**: Row number of the entry.
|
| 23 |
+
- **timestamp**: UTC+8 time of data collection.
|
| 24 |
+
- **local_timestamp**: ESP32 local time.
|
| 25 |
+
- **rssi**: Received Signal Strength Indicator.
|
| 26 |
+
- **data**: CSI data with 104 numbers representing 52 subcarriers, where each subcarrier's complex CSI value is computed as `a[2i] + a[2i+1]j`.
|
| 27 |
+
- **Other columns**: Additional ESP32 device information (e.g., MAC, MCS details).
|
| 28 |
+
|
| 29 |
+
### Data Fields
|
| 30 |
+
|
| 31 |
+
| Field Name | Description |
|
| 32 |
+
| --------------- | ------------------------------------------------------------ |
|
| 33 |
+
| seq | Row number of the entry |
|
| 34 |
+
| timestamp | UTC+8 time of data collection |
|
| 35 |
+
| local_timestamp | ESP32 local time |
|
| 36 |
+
| rssi | Received Signal Strength Indicator |
|
| 37 |
+
| data | CSI data (104 numbers, representing 52 subcarriers as complex values) |
|
| 38 |
+
| Other columns | Additional ESP32 metadata (e.g., MAC address, MCS details) |
|
| 39 |
+
|
| 40 |
+
### Data Splits
|
| 41 |
+
|
| 42 |
+
The dataset is organized by the number of people (0–3), with each folder containing `.csv` files corresponding to the number of people present in the environment:
|
| 43 |
+
|
| 44 |
+
- **Folders**: 0, 1, 2, 3 (representing the number of people).
|
| 45 |
+
|
| 46 |
+
## Dataset Creation
|
| 47 |
+
|
| 48 |
+
### Curation Rationale
|
| 49 |
+
|
| 50 |
+
The dataset was created to facilitate research on WiFi-based people number estimation using low-cost ESP32-S3 devices, enabling applications in smart environments, occupancy monitoring, and crowd management.
|
| 51 |
+
|
| 52 |
+
### Source Data
|
| 53 |
+
|
| 54 |
+
- Initial Data Collection:
|
| 55 |
+
|
| 56 |
+
Data was collected in an indoor meeting room with a single transmitter and multiple receivers using ESP32-S3 devices. The setup included:
|
| 57 |
+
|
| 58 |
+
- **Frequency Band:** 2.4 GHz
|
| 59 |
+
- **Bandwidth:** 20 MHz (52 subcarriers)
|
| 60 |
+
- **Protocol:** 802.11n
|
| 61 |
+
- **Waveform:** OFDM
|
| 62 |
+
- **Sampling Rate:** ~100 Hz
|
| 63 |
+
- **Antenna Configuration:** 1 antenna per device
|
| 64 |
+
- **Environment:** Indoor with walls and a soft pad to prevent volunteer injuries.
|
| 65 |
+
|
| 66 |
+
- **Who are the source data producers?**
|
| 67 |
+
The data was collected by researchers, with volunteers present in a controlled meeting room environment.
|
| 68 |
+
|
| 69 |
+
### Annotations
|
| 70 |
+
|
| 71 |
+
- **Annotation Process:**
|
| 72 |
+
Each `.csv` file is stored in a folder labeled with the number of people present (0–3). No additional manual annotations were provided.
|
| 73 |
+
- **Who are the annotators?**
|
| 74 |
+
The dataset creators labeled the data based on the experimental setup.
|
| 75 |
+
|
| 76 |
+
### Personal and Sensitive Information
|
| 77 |
+
|
| 78 |
+
The dataset does not contain personally identifiable information, as it focuses on the number of people (0–3) without associating specific identities or biometric data beyond CSI patterns.
|
| 79 |
+
|
| 80 |
+
## Citation
|
| 81 |
+
|
| 82 |
+
```bibtex
|
| 83 |
+
@article{zhao2024mining,
|
| 84 |
+
title={CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing},
|
| 85 |
+
author={Zhao, Zijian and Meng, Fanyi and Lyu, Zhonghao and Li, Hang and Li, Xiaoyang and Zhu, Guangxu},
|
| 86 |
+
journal={arXiv preprint arXiv:2412.06861},
|
| 87 |
+
year={2024}
|
| 88 |
+
}
|
| 89 |
+
```
|