# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ qiskit_humaneval dataset""" import json import datasets import os import requests logger = datasets.logging.get_logger(__name__) _CITATION = """\ @misc{2406.14712, Author = {Sanjay Vishwakarma and Francis Harkins and Siddharth Golecha and Vishal Sharathchandra Bajpe and Nicolas Dupuis and Luca Buratti and David Kremer and Ismael Faro and Ruchir Puri and Juan Cruz-Benito}, Title = {Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models}, Year = {2024}, Eprint = {arXiv:2406.14712}, } """ _DESCRIPTION = """\ qiskit_humaneval is a dataset for evaluating LLM's at writing Qiskit code. """ _HOMEPAGE = "https://github.com/qiskit-community/qiskit-human-eval" _LICENSE = "apache-2.0" _URL = "https://raw.githubusercontent.com/qiskit-community/qiskit-human-eval/"\ "refs/heads/main/dataset/dataset_qiskit_test_human_eval.json" class QiskitHumanEval(datasets.GeneratorBasedBuilder): """ qiskit_humaneval dataset 0.1.0: first version of the dataset """ VERSION = datasets.Version("0.1.0") def _info(self): features = datasets.Features( { 'task_id': datasets.Value('string'), 'prompt': datasets.Value('string'), 'canonical_solution': datasets.Value('string'), 'test': datasets.Value('string'), 'entry_point': datasets.Value('string'), 'difficulty_scale': datasets.Value('string') } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): filepath = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": filepath, }, ), ] def _generate_examples(self, filepath): with open(filepath, 'r', encoding="UTF-8") as in_json: for row in json.load(in_json): id_ = row['task_id'] yield id_, { 'task_id': row['task_id'], 'prompt': row['prompt'], 'canonical_solution': row['canonical_solution'], 'test': row['test'], 'entry_point': row['entry_point'], 'difficulty_scale': row['difficulty_scale'] }