qiskit_humaneval / qiskit_humaneval.py
ndupuis's picture
Add dataset loading script
c7e46f5
raw
history blame
3.23 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" qiskit_humaneval dataset"""
import json
import datasets
import os
import requests
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{2406.14712,
Author = {Sanjay Vishwakarma and Francis Harkins and Siddharth Golecha and Vishal Sharathchandra Bajpe and Nicolas Dupuis and Luca Buratti and David Kremer and Ismael Faro and Ruchir Puri and Juan Cruz-Benito},
Title = {Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models},
Year = {2024},
Eprint = {arXiv:2406.14712},
}
"""
_DESCRIPTION = """\
qiskit_humaneval is a dataset for evaluating LLM's at writing Qiskit code.
"""
_HOMEPAGE = "https://github.com/qiskit-community/qiskit-human-eval"
_LICENSE = "apache-2.0"
_URL = "https://raw.githubusercontent.com/qiskit-community/qiskit-human-eval/"\
"refs/heads/main/dataset/dataset_qiskit_test_human_eval.json"
class QiskitHumanEval(datasets.GeneratorBasedBuilder):
""" qiskit_humaneval dataset
0.1.0: first version of the dataset
"""
VERSION = datasets.Version("0.1.0")
def _info(self):
features = datasets.Features(
{
'task_id': datasets.Value('string'),
'prompt': datasets.Value('string'),
'canonical_solution': datasets.Value('string'),
'test': datasets.Value('string'),
'entry_point': datasets.Value('string'),
'difficulty_scale': datasets.Value('string')
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
filepath = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": filepath,
},
),
]
def _generate_examples(self, filepath):
with open(filepath, 'r', encoding="UTF-8") as in_json:
for row in json.load(in_json):
id_ = row['task_id']
yield id_, {
'task_id': row['task_id'],
'prompt': row['prompt'],
'canonical_solution': row['canonical_solution'],
'test': row['test'],
'entry_point': row['entry_point'],
'difficulty_scale': row['difficulty_scale']
}