|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" qiskit_humaneval dataset""" |
|
|
|
import json |
|
import datasets |
|
import os |
|
import requests |
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@misc{2406.14712, |
|
Author = {Sanjay Vishwakarma and Francis Harkins and Siddharth Golecha and Vishal Sharathchandra Bajpe and Nicolas Dupuis and Luca Buratti and David Kremer and Ismael Faro and Ruchir Puri and Juan Cruz-Benito}, |
|
Title = {Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models}, |
|
Year = {2024}, |
|
Eprint = {arXiv:2406.14712}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
qiskit_humaneval is a dataset for evaluating LLM's at writing Qiskit code. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/qiskit-community/qiskit-human-eval" |
|
|
|
_LICENSE = "apache-2.0" |
|
|
|
_URL = "https://raw.githubusercontent.com/qiskit-community/qiskit-human-eval/"\ |
|
"refs/heads/main/dataset/dataset_qiskit_test_human_eval.json" |
|
|
|
class QiskitHumanEval(datasets.GeneratorBasedBuilder): |
|
""" qiskit_humaneval dataset |
|
|
|
0.1.0: first version of the dataset |
|
""" |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
'task_id': datasets.Value('string'), |
|
'prompt': datasets.Value('string'), |
|
'canonical_solution': datasets.Value('string'), |
|
'test': datasets.Value('string'), |
|
'entry_point': datasets.Value('string'), |
|
'difficulty_scale': datasets.Value('string') |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
filepath = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, 'r', encoding="UTF-8") as in_json: |
|
for row in json.load(in_json): |
|
id_ = row['task_id'] |
|
yield id_, { |
|
'task_id': row['task_id'], |
|
'prompt': row['prompt'], |
|
'canonical_solution': row['canonical_solution'], |
|
'test': row['test'], |
|
'entry_point': row['entry_point'], |
|
'difficulty_scale': row['difficulty_scale'] |
|
} |
|
|