Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 4,404 Bytes
75b4fee
 
 
 
 
 
 
 
 
 
 
 
388eefc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b4fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---

license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
language:
  - en
tags:
- Disaster
- Crisis Informatics
pretty_name: 'HumAID: Human-Annotated Disaster Incidents Data from Twitter -- Event type dataset'
size_categories:
  - 10K<n<100K
dataset_info:
- config_name: flood
  splits:
    - name: train
      num_examples: 7815
    - name: dev
      num_examples: 1137
    - name: test
      num_examples: 2214
- config_name: fire
  splits:
    - name: train
      num_examples: 7792
    - name: dev
      num_examples: 1134
    - name: test
      num_examples: 2207
- config_name: earthquake
  splits:
    - name: train
      num_examples: 6250
    - name: dev
      num_examples: 909
    - name: test
      num_examples: 1773
configs:
- config_name: flood
  data_files:
    - split: train
      path: flood/train.json
    - split: dev
      path: flood/dev.json
    - split: test
      path: flood/test.json
- config_name: fire
  data_files:
    - split: train
      path: fire/train.json
    - split: dev
      path: fire/dev.json
    - split: test
      path: fire/test.json
- config_name: earthquake
  data_files:
    - split: train
      path: earthquake/train.json
    - split: dev
      path: earthquake/dev.json
    - split: test
      path: earthquake/test.json
- config_name: hurricane
  data_files:
    - split: train
      path: hurricane/train.json
    - split: dev
      path: hurricane/dev.json
    - split: test
      path: hurricane/test.json
---

# HumAID: Human-Annotated Disaster Incidents Data from Twitter


## Dataset Description

- **Homepage:** https://crisisnlp.qcri.org/humaid_dataset

- **Repository:** https://crisisnlp.qcri.org/data/humaid/humaid_data_all.zip

- **Paper:** https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919



### Dataset Summary



The HumAID Twitter dataset consists of several thousands of manually annotated tweets that has been collected during 19 major natural disaster events including earthquakes, hurricanes, wildfires, and floods, which happened from 2016 to 2019 across different parts of the World. The annotations in the provided datasets consists of following humanitarian categories. The dataset consists only english tweets and it is the largest dataset for crisis informatics so far.

** Humanitarian categories **

- Caution and advice

- Displaced people and evacuations

- Dont know cant judge

- Infrastructure and utility damage

- Injured or dead people

- Missing or found people

- Not humanitarian

- Other relevant information

- Requests or urgent needs

- Rescue volunteering or donation effort

- Sympathy and support



The resulting annotated dataset consists of 11 labels.



### Supported Tasks and Benchmark

The dataset can be used to train a model for multiclass tweet classification for disaster response. The benchmark results can be found in https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919.



Dataset is also released with event-wise and JSON objects for further research.

Full set of the dataset can be found in https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/A7NVF7



### Languages



English



## Dataset Structure



### Data Instances



```

{



"tweet_text": "@RT_com: URGENT: Death toll in #Ecuador #quake rises to 233 \u2013 President #Correa #1 in #Pakistan",



"class_label": "injured_or_dead_people"



}

```

### Data Fields



* tweet_text: corresponds to the tweet text.
* class_label: corresponds to a label assigned to a given tweet text





### Data Splits



* Train

* Development

* Test



## Dataset Creation

Tweets has been collected during several disaster events.





### Annotations

AMT has been used to annotate the dataset. Please check the paper for a more detail.



#### Who are the annotators?

- crowdsourced



### Licensing Information



- cc-by-nc-4.0



### Citation Information



```

@inproceedings{humaid2020,

Author = {Firoj Alam, Umair Qazi, Muhammad Imran, Ferda Ofli},

booktitle={Proceedings of the Fifteenth International AAAI Conference on Web and Social Media},

series={ICWSM~'21},

Keywords = {Social Media, Crisis Computing, Tweet Text Classification, Disaster Response},

Title = {HumAID: Human-Annotated Disaster Incidents Data from Twitter},

Year = {2021},

publisher={AAAI},

address={Online},

}

```