Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Arabic
Libraries:
Datasets
pandas
License:
Firoj commited on
Commit
38acdf2
·
1 Parent(s): d1176ac

Added large files

Browse files
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ *.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,193 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - ar
7
+ tags:
8
+ - News Media
9
+ - Fake News
10
+ - Propaganda detection
11
+ pretty_name: 'ArMPro: Annotation and Detection of Propaganda Spans in News Articles'
12
+ size_categories:
13
+ - 10K<n<100K
14
+ dataset_info:
15
+ - config_name: binary
16
+ splits:
17
+ - name: train
18
+ num_examples: 6001
19
+ - name: dev
20
+ num_examples: 671
21
+ - name: test
22
+ num_examples: 1325
23
+ - config_name: multilabel
24
+ splits:
25
+ - name: train
26
+ num_examples: 6001
27
+ - name: dev
28
+ num_examples: 671
29
+ - name: test
30
+ num_examples: 1325
31
+ - config_name: coarse
32
+ splits:
33
+ - name: train
34
+ num_examples: 6001
35
+ - name: dev
36
+ num_examples: 671
37
+ - name: test
38
+ num_examples: 1325
39
+ - config_name: span
40
+ splits:
41
+ - name: train
42
+ num_examples: 6001
43
+ - name: dev
44
+ num_examples: 671
45
+ - name: test
46
+ num_examples: 1325
47
+ configs:
48
+ - config_name: binary
49
+ data_files:
50
+ - split: test
51
+ path: binary/test.json
52
+ - split: dev
53
+ path: binary/dev.json
54
+ - split: train
55
+ path: binary/train.json
56
+ - config_name: multilabel
57
+ data_files:
58
+ - split: test
59
+ path: multilabel/test.json
60
+ - split: dev
61
+ path: multilabel/dev.json
62
+ - split: train
63
+ path: multilabel/train.json
64
+ - config_name: coarse
65
+ data_files:
66
+ - split: test
67
+ path: coarse/test.json
68
+ - split: dev
69
+ path: coarse/dev.json
70
+ - split: train
71
+ path: coarse/train.json
72
+ - config_name: span
73
+ data_files:
74
+ - split: test
75
+ path: span/test.json
76
+ - split: dev
77
+ path: span/dev.json
78
+ - split: train
79
+ path: span/train.json
80
+ ---
81
+
82
+ # ArMPro
83
+ This repo contains the *Arabic* propaganda dataset (**ArMPro**).
84
+ <!-- The dataset covers two modalities, (1) text represented by annotated news paragraphs and (2) images and text represented by memes. -->
85
+
86
+ ![License](https://img.shields.io/badge/license-CC--BY--NC--SA-blue) [![Paper](https://img.shields.io/badge/Paper-Download%20PDF-green)](https://aclanthology.org/2024.lrec-main.244.pdf)
87
+
88
+ **Table of contents:**
89
+ * [Dataset](#dataset)
90
+ + [Data splits](#data-splits)
91
+ + [Coarse-grained label distribuition](#coarse-grained-label-distribuition)
92
+ + [Fine-grained label distribuition](#fine-grained-label-distribuition)
93
+ * [Meme Subset (*Coming Soon!*)](#meme-subset-coming-soon)
94
+ * [Licensing](#licensing)
95
+ * [Citation](#citation)
96
+
97
+
98
+ ## Dataset
99
+ This dataset represents the largest one to date for fine-grained propaganda detection. It includes **8,000** paragraphs extracted from over **2,800** Arabic news articles, covering a large variety of news domains.
100
+
101
+
102
+ Example annotated paragraph:
103
+
104
+ <img width="350" alt="Screenshot 2024-05-04 at 3 56 26 PM" src="https://github.com/MaramHasanain/ArMPro/assets/3918663/255f6b47-1942-48cb-ba0a-259a79a7f93a">
105
+
106
+ ### Data splits
107
+ We split the dataset in a stratified manner, allocating 75\%, 8.5\%, and 16.5\% for training, development, and testing, respectively. During the stratified sampling, the multilabel setting was considered when splitting the dataset. This ensures that persuasion techniques are similarly distributed across the splits.
108
+
109
+ ### Coarse-grained label distribuition
110
+ | **Binary label** | **Train** | **Dev** | **Test** |
111
+ |--------------------|-------|-----|-------|
112
+ | Propagandistic | 3,777 | 425 | 832 |
113
+ | Non-Propagandistic | 2,225 | 247 | 494 |
114
+ | **Total** | **6,002** | **672** | **1,326** |
115
+
116
+ | **Coarse-grained label** | **Train** | **Dev** | **Test** |
117
+ |----------------------|-------|-----|-------|
118
+ | Manipulative Wording | 3,460 | 387 | 757 |
119
+ | no technique | 2,225 | 247 | 494 |
120
+ | Reputation | 1,404 | 163 | 314 |
121
+ | Justification | 471 | 48 | 102 |
122
+ | Simplification | 384 | 42 | 82 |
123
+ | Call | 176 | 21 | 40 |
124
+ | Distraction | 74 | 9 | 16 |
125
+ | **Total** | **8,194** | **917** | **1,805** |
126
+
127
+ ### Fine-grained label distribuition
128
+
129
+ | **Technique** | **Train** | **Dev** | **Test** |
130
+ |----------------------------------|--------|-------|-------|
131
+ | Loaded Language | 7,862 | 856 | 1670 |
132
+ | no technique | 2,225 | 247 | 494 |
133
+ | Name Calling/Labeling | 1,526 | 158 | 328 |
134
+ | Exaggeration/Minimisation | 967 | 113 | 210 |
135
+ | Questioning the Reputation | 587 | 58 | 131 |
136
+ | Obfuscation/Vagueness/Confusion | 562 | 62 | 132 |
137
+ | Causal Oversimplification | 289 | 33 | 67 |
138
+ | Doubt | 227 | 27 | 49 |
139
+ | Appeal to Authority | 192 | 22 | 42 |
140
+ | Flag Waving | 174 | 22 | 41 |
141
+ | Repetition | 123 | 13 | 30 |
142
+ | Slogans | 101 | 19 | 24 |
143
+ | Appeal to Fear/Prejudice | 93 | 11 | 21 |
144
+ | Appeal to Hypocrisy | 82 | 9 | 17 |
145
+ | Consequential Oversimplification | 81 | 10 | 19 |
146
+ | False Dilemma/No Choice | 60 | 6 | 13 |
147
+ | Conversation Killer | 53 | 6 | 13 |
148
+ | Appeal to Time | 52 | 6 | 12 |
149
+ | Appeal to Popularity | 44 | 4 | 8 |
150
+ | Appeal to Values | 38 | 5 | 9 |
151
+ | Red Herring | 38 | 4 | 8 |
152
+ | Guilt by Association | 22 | 2 | 5 |
153
+ | Whataboutism | 20 | 4 | 4 |
154
+ | Straw Man | 19 | 2 | 4 |
155
+ | **Total** | **15,437** | **1,699** | **3,351** |
156
+
157
+ **Note**: "no technique" refers to paragraphs without any propagandistic techniques use.
158
+
159
+ <!-- ## Meme Subset (*Coming Soon!*) -->
160
+
161
+
162
+
163
+ ## Licensing
164
+
165
+ This dataset is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
166
+
167
+ ## Citation
168
+ If you use our dataset in a scientific publication, we would appreciate using the following citations:
169
+
170
+ - Maram Hasanain, Fatema Ahmad, and Firoj Alam. 2024. Can GPT-4 Identify Propaganda? Annotation and Detection of Propaganda Spans in News Articles. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 2724–2744, Torino, Italia. ELRA and ICCL.
171
+
172
+ ```
173
+ @inproceedings{hasanain-etal-2024-gpt,
174
+ title = "Can {GPT}-4 Identify Propaganda? Annotation and Detection of Propaganda Spans in News Articles",
175
+ author = "Hasanain, Maram and
176
+ Ahmad, Fatema and
177
+ Alam, Firoj",
178
+ editor = "Calzolari, Nicoletta and
179
+ Kan, Min-Yen and
180
+ Hoste, Veronique and
181
+ Lenci, Alessandro and
182
+ Sakti, Sakriani and
183
+ Xue, Nianwen",
184
+ booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
185
+ month = may,
186
+ year = "2024",
187
+ address = "Torino, Italia",
188
+ publisher = "ELRA and ICCL",
189
+ url = "https://aclanthology.org/2024.lrec-main.244",
190
+ pages = "2724--2744",
191
+ abstract = "The use of propaganda has spiked on mainstream and social media, aiming to manipulate or mislead users. While efforts to automatically detect propaganda techniques in textual, visual, or multimodal content have increased, most of them primarily focus on English content. The majority of the recent initiatives targeting medium to low-resource languages produced relatively small annotated datasets, with a skewed distribution, posing challenges for the development of sophisticated propaganda detection models. To address this challenge, we carefully develop the largest propaganda dataset to date, ArPro, comprised of 8K paragraphs from newspaper articles, labeled at the text span level following a taxonomy of 23 propagandistic techniques. Furthermore, our work offers the first attempt to understand the performance of large language models (LLMs), using GPT-4, for fine-grained propaganda detection from text. Results showed that GPT-4{'}s performance degrades as the task moves from simply classifying a paragraph as propagandistic or not, to the fine-grained task of detecting propaganda techniques and their manifestation in text. Compared to models fine-tuned on the dataset for propaganda detection at different classification granularities, GPT-4 is still far behind. Finally, we evaluate GPT-4 on a dataset consisting of six other languages for span detection, and results suggest that the model struggles with the task across languages. We made the dataset publicly available for the community.",
192
+ }
193
+ ```
binary/dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f3cd766984dce1e06d677854d0ea441e2a7dc7348bf5ae4c2fd8bfc85642820
3
+ size 1074841
binary/test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0320569814f4e902e3d96ea5e6826df516b66cd8ff44301e84844951af3da8e
3
+ size 2921006
binary/train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd66a7a6c7eb2680fa38ac1a911dd9d74046716858b010d53458929e8af6ddc3
3
+ size 12594117
coarse/dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f593ad4f59b6c77b16bb0a01043e775f622968baebceb4f62884510459bee457
3
+ size 1080718
coarse/test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aa9e09c4ea1fee9ce60e2057f5bd4bdb50c8ad239cf3a6181cc56e111534eaa
3
+ size 2932343
coarse/train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a9c0cf42c2c65c10ab1e968bfbe66cbbddc0fbd9a6eb3ef5b90f59fef5ad04c
3
+ size 13030720
fine-grained_to_coarse-grained_mapping.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Appeal_to_Time Call
2
+ Conversation_Killer Call
3
+ Slogans Call
4
+ Red_Herring Distraction
5
+ Straw_Man Distraction
6
+ Whataboutism Distraction
7
+ Appeal_to_Authority Justification
8
+ Appeal_to_Fear-Prejudice Justification
9
+ Appeal_to_Popularity Justification
10
+ Appeal_to_Values Justification
11
+ Flag_Waving Justification
12
+ Exaggeration-Minimisation Manipulative_Wording
13
+ Loaded_Language Manipulative_Wording
14
+ Obfuscation-Vagueness-Confusion Manipulative_Wording
15
+ Repetition Manipulative_Wording
16
+ Appeal_to_Hypocrisy Reputation
17
+ Doubt Reputation
18
+ Guilt_by_Association Reputation
19
+ Name_Calling-Labeling Reputation
20
+ Questioning_the_Reputation Reputation
21
+ Causal_Oversimplification Simplification
22
+ Consequential_Oversimplification Simplification
23
+ False_Dilemma-No_Choice Simplification
24
+ no_technique no_technique
multilabel/dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45fa42f90f1451c8a0877eaa7ae60b7743e6e66af118cba8eca11f31be06b04a
3
+ size 1086040
multilabel/test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df5bbcab2aad3e3ff68685caf8cbfdf84617db1b8aed7e721c05bcc237dda06f
3
+ size 2943358
multilabel/train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06eb599be7213a6903704264f65ed54f8f0661362bf22dca6855ca275acedf3e
3
+ size 13288953
persuasion_techniques_list.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Appeal_to_Authority
2
+ Appeal_to_Fear-Prejudice
3
+ Appeal_to_Hypocrisy
4
+ Appeal_to_Popularity
5
+ Appeal_to_Time
6
+ Appeal_to_Values
7
+ Causal_Oversimplification
8
+ Consequential_Oversimplification
9
+ Conversation_Killer
10
+ Doubt
11
+ Exaggeration-Minimisation
12
+ False_Dilemma-No_Choice
13
+ Flag_Waving
14
+ Guilt_by_Association
15
+ Loaded_Language
16
+ Name_Calling-Labeling
17
+ Obfuscation-Vagueness-Confusion
18
+ Questioning_the_Reputation
19
+ Red_Herring
20
+ Repetition
21
+ Slogans
22
+ Straw_Man
23
+ Whataboutism
24
+ no_technique
span/dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b207e05cdd065162638b8216b1bb74ed11c3f6183b7e54df80a959e9f0fc99bf
3
+ size 1239183
span/test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d38e79f6820edc1b87405ee20963aadae126eeae5775dff8b09352668b373427
3
+ size 3245363
span/train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e48e4d9375e80c24e1f939bc78fda078341521e9ace4d2b40406bf00c0436f7d
3
+ size 18638306