updated script
Browse files
README.md
CHANGED
@@ -38,6 +38,39 @@ You can load the dataset using the `datasets` library from Hugging Face:
|
|
38 |
from datasets import load_dataset
|
39 |
|
40 |
dataset = load_dataset("QCRI/ArMeme")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
```
|
42 |
|
43 |
**Language:** Arabic
|
|
|
38 |
from datasets import load_dataset
|
39 |
|
40 |
dataset = load_dataset("QCRI/ArMeme")
|
41 |
+
|
42 |
+
# Specify the directory where you want to save the dataset
|
43 |
+
output_dir="./ArMeme/"
|
44 |
+
|
45 |
+
# Save the dataset to the specified directory. This will save all splits to the output directory.
|
46 |
+
dataset.save_to_disk(output_dir)
|
47 |
+
|
48 |
+
# If you want to get the raw images from HF dataset format
|
49 |
+
|
50 |
+
from PIL import Image
|
51 |
+
import os
|
52 |
+
import json
|
53 |
+
|
54 |
+
# Directory to save the images
|
55 |
+
output_dir="./ArMeme/"
|
56 |
+
os.makedirs(output_dir, exist_ok=True)
|
57 |
+
|
58 |
+
# Assuming the images are in a column named "image"
|
59 |
+
image_column = "image"
|
60 |
+
|
61 |
+
# Iterate over the dataset and save each image
|
62 |
+
for split in ['train','dev','test']:
|
63 |
+
jsonl_path = os.path.join(output_dir, f"arabic_memes_categorization_{split}.jsonl")
|
64 |
+
with open(jsonl_path, 'w', encoding='utf-8') as f:
|
65 |
+
for idx, item in enumerate(dataset[split]):
|
66 |
+
# Access the image directly as it's already a PIL.Image object
|
67 |
+
image = item[image_column]
|
68 |
+
image_path = os.path.join(output_dir, item['img_path'])
|
69 |
+
# Ensure the directory exists
|
70 |
+
os.makedirs(os.path.dirname(image_path), exist_ok=True)
|
71 |
+
image.save(image_path)
|
72 |
+
del item['image']
|
73 |
+
f.write(json.dumps(item, ensure_ascii=False) + '\n')
|
74 |
```
|
75 |
|
76 |
**Language:** Arabic
|