--- license: cc-by-nc-4.0 paperswithcode_id: vggface2 pretty_name: vggface2 --- ``` @article{DBLP:journals/corr/abs-1710-08092, author = {Qiong Cao and Li Shen and Weidi Xie and Omkar M. Parkhi and Andrew Zisserman}, title = {VGGFace2: {A} dataset for recognising faces across pose and age}, journal = {CoRR}, volume = {abs/1710.08092}, year = {2017}, url = {http://arxiv.org/abs/1710.08092}, eprinttype = {arXiv}, eprint = {1710.08092}, timestamp = {Wed, 04 Aug 2021 07:50:14 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1710-08092.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` # README ## 关于超神经 Hyper.AI 超神经 Hyper.AI(https://hyper.ai)是科技实验媒体,专注报道人工智能与其适用场景。致力于推动中文领域对机器智能的认知与普及,探讨机器智能的对社会的影响。超神经为提高科研效率,提供大陆范围内最快最全的公开数据集下载节点、人工智能百科词条等多个产品,服务产业相关从业者和科研院所的师生。 ## 关于数据集 - 数据集名称:VGG-Face2 - 发布机构:牛津大学工程科学系视觉几何组 Visual Geometry Group, Department of Engineering Science, University of Oxford - 网址:http://www.robots.ox.ac.uk/~vgg/data/vgg_face/ - 大小:nan GB - 简介:VGGFace2是一个大规模的人脸识别数据集,包含9131个人的面部。 图像从Google图片搜索下载,在姿势,年龄,照明,种族和职业方面有很大差异。该数据集于2015年由牛津大学工程科学系视觉几何组发布,相关论文为Deep Face Recognition。