Datasets:

ArXiv:
DOI:
License:
File size: 6,960 Bytes
4a613d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37673fa
4a613d6
 
63632a6
c4aabc3
 
4a613d6
f0e1f7c
 
 
63632a6
 
 
 
 
 
 
 
 
 
4a613d6
 
 
 
c4aabc3
4a613d6
 
 
 
 
 
db1c650
4a613d6
 
 
 
 
 
 
 
 
 
 
 
 
9e50a10
 
 
 
 
4a613d6
 
 
 
 
9e50a10
4a613d6
 
 
 
 
 
9e50a10
4a613d6
 
 
 
 
 
 
 
 
593062f
4a613d6
edd07ce
4a613d6
 
ace1c21
4a613d6
 
9dedc83
4a613d6
 
 
534b22e
9126851
4a613d6
63632a6
 
4a613d6
0dfdc3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a613d6
30467d3
4a613d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and ProgramComputer.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""VGGFace2 audio-visual human speech dataset."""

import json
import os
import re
from urllib.parse import urlparse, parse_qs
from getpass import getpass
from hashlib import sha256
from itertools import repeat
from multiprocessing import Manager, Pool, Process
from pathlib import Path
from shutil import copyfileobj
from warnings import catch_warnings, filterwarnings
from urllib3.exceptions import InsecureRequestWarning

import pandas as pd
import requests

import datasets

_DESCRIPTION = "VGGFace2 is a large-scale face recognition dataset. Images are downloaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and profession."
_CITATION = """\
@article{DBLP:journals/corr/abs-1710-08092,
  author       = {Qiong Cao and
                  Li Shen and
                  Weidi Xie and
                  Omkar M. Parkhi and
                  Andrew Zisserman},
  title        = {VGGFace2: {A} dataset for recognising faces across pose and age},
  journal      = {CoRR},
  volume       = {abs/1710.08092},
  year         = {2017},
  url          = {http://arxiv.org/abs/1710.08092},
  eprinttype    = {arXiv},
  eprint       = {1710.08092},
  timestamp    = {Wed, 04 Aug 2021 07:50:14 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1710-08092.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
"""



_URLS = {
    "default": {
        "train": "https://huggingface.co/datasets/ProgramComputer/VGGFace2/resolve/main/data/vggface2_train.tar.gz",
        "test": "https://huggingface.co/datasets/ProgramComputer/VGGFace2/resolve/main/data/vggface2_test.tar.gz",
    }
}



class VGGFace2(datasets.GeneratorBasedBuilder):
    """VGGFace2 is dataset contains faces from Google Search"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig( version=VERSION
        )
    ]

    def _info(self):
        features = {
            "image": datasets.Image(),
            "image_id": datasets.Value("string"),
            "class_id": datasets.Value("string"),
            "identity": datasets.Value("string"),
            'gender': datasets.Value("string"),
            'sample_num':datasets.Value("uint64"), 
            'flag':datasets.Value("bool"),
            "male": datasets.Value("bool"),
            "black_hair": datasets.Value("bool"),
            "gray_hair": datasets.Value("bool"),
            "blond_hair": datasets.Value("bool"),
            "long_hair": datasets.Value("bool"),
            "mustache_or_beard": datasets.Value("bool"),
            "wearing_hat": datasets.Value("bool"),
            "eyeglasses": datasets.Value("bool"),
            "sunglasses": datasets.Value("bool"),
            "mouth_open": datasets.Value("bool"),
        }

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            supervised_keys=datasets.info.SupervisedKeysData("file", "class_id"),
            features=datasets.Features(features),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        targets = (
            ["01-Male.txt", "02-Black_Hair.txt","03-Brown_Hair.txt","04-Gray_Hair.txt","05-Blond_Hair.txt","06-Long_Hair.txt","07-Mustache_or_Beard.txt","08-Wearing_Hat.txt","09-Eyeglasses.txt","10-Sunglasses.txt","11-Mouth_Open.txt"]
        )
        target_dict =   dict(
                (
                    re.sub(r"^\d+-|\.txt$","",target),
                    f"https://raw.githubusercontent.com/ox-vgg/vgg_face2/master/attributes/{target}",
                )
                for target in targets
            )
        target_dict['identity'] = "https://huggingface.co/datasets/ProgramComputer/VGGFace2/raw/main/meta/identity_meta.csv"
        metadata = dl_manager.download(
            target_dict
        )

        mapped_paths_train = dl_manager.iter_archive( 
                        _URLS["default"]["train"]
        )
        mapped_paths_test = dl_manager.iter_archive( 
                        _URLS["default"]["test"]
        )
        return [
            datasets.SplitGenerator(
                name="train",
                gen_kwargs={
                    "paths": mapped_paths_train,
                    "meta_paths": metadata,
                },
            ),
            datasets.SplitGenerator(
                name="test",
                gen_kwargs={
                    "paths": mapped_paths_test,
                    "meta_paths": metadata,
                },
            ),
        ]

    def _generate_examples(self, paths, meta_paths):
        key = 0
        meta = pd.read_csv(
                meta_paths["identity"],
                sep=", "
            )
        for key,conf in [(k,v) for (k,v) in meta_paths.items() if k != "identity"]:
            
            temp = pd.read_csv(conf,sep='\t', header=None)
            temp.columns = ['Image_Path', key]
            
            temp['Class_ID'] = temp['Image_Path'].str.split('/').str[0]
            #temp['Image_Name'] = temp['Image_Path'].str.split('/').str[1]
            
            temp.drop(columns=['Image_Path'], inplace=True)
            
            meta = meta.merge(temp, on='Class_ID', how='left')
        for file_path, file_obj in paths:

                label = file_path.split("/")[2]
                yield file_path, {
                        "image": {"path": file_path, "bytes": file_obj.read()},
            # "image_id": datasets.Value("string"),
            # "class_id": datasets.Value("string"),
            # "identity": datasets.Value("string"),
            # 'gender': dataset.Value("string"),
            # 'sample_num':dataset.Value("uint64"), 
            # 'flag':dataset.Value("bool"),
            # "male": datasets.Value("bool"),
            # "black_hair": datasets.Value("bool"),
            # "gray_hair": datasets.Value("bool"),
            # "blond_hair": datasets.Value("bool"),
            # "long_hair": datasets.Value("bool"),
            # "mustache_or_beard": datasets.Value("bool"),
            # "wearing_hat": datasets.Value("bool"),
            # "eyeglasses": datasets.Value("bool"),
            # "sunglasses": datasets.Value("bool"),
            #"mouth_open": datasets.Value("bool")
                    }
                key+= 1