Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Spanish
Size:
10K - 100K
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition""" | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @inproceedings{tjong-kim-sang-2002-introduction, | |
| title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition", | |
| author = "Tjong Kim Sang, Erik F.", | |
| booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)", | |
| year = "2002", | |
| url = "https://www.aclweb.org/anthology/W02-2024", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. | |
| Example: | |
| [PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] . | |
| The shared task of CoNLL-2002 concerns language-independent named entity recognition. | |
| We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. | |
| The participants of the shared task will be offered training and test data for at least two languages. | |
| They will use the data for developing a named-entity recognition system that includes a machine learning component. | |
| Information sources other than the training data may be used in this shared task. | |
| We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training). | |
| The train/validation/test sets are available in Spanish and Dutch. | |
| For more details see https://www.clips.uantwerpen.be/conll2002/ner/ and https://www.aclweb.org/anthology/W02-2024/ | |
| """ | |
| _URL = "https://www.cs.upc.edu/~nlp/tools/nerc/" | |
| _TRAINING_FILE = "esp.train.gz" | |
| _DEV_FILE = "esp.testa.gz" | |
| _TEST_FILE = "esp.testb.gz" | |
| class Conll2002Config(datasets.BuilderConfig): | |
| """BuilderConfig for Conll2002""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig forConll2002. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(Conll2002Config, self).__init__(**kwargs) | |
| class Conll2002(datasets.GeneratorBasedBuilder): | |
| """Conll2002 dataset.""" | |
| BUILDER_CONFIGS = [ | |
| Conll2002Config(name="es", version=datasets.Version("1.0.0"), description="Conll2002 Spanish dataset"), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "pos_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "AO", | |
| "AQ", | |
| "CC", | |
| "CS", | |
| "DA", | |
| "DE", | |
| "DD", | |
| "DI", | |
| "DN", | |
| "DP", | |
| "DT", | |
| "Faa", | |
| "Fat", | |
| "Fc", | |
| "Fd", | |
| "Fe", | |
| "Fg", | |
| "Fh", | |
| "Fia", | |
| "Fit", | |
| "Fp", | |
| "Fpa", | |
| "Fpt", | |
| "Fs", | |
| "Ft", | |
| "Fx", | |
| "Fz", | |
| "I", | |
| "NC", | |
| "NP", | |
| "P0", | |
| "PD", | |
| "PI", | |
| "PN", | |
| "PP", | |
| "PR", | |
| "PT", | |
| "PX", | |
| "RG", | |
| "RN", | |
| "SP", | |
| "VAI", | |
| "VAM", | |
| "VAN", | |
| "VAP", | |
| "VAS", | |
| "VMG", | |
| "VMI", | |
| "VMM", | |
| "VMN", | |
| "VMP", | |
| "VMS", | |
| "VSG", | |
| "VSI", | |
| "VSM", | |
| "VSN", | |
| "VSP", | |
| "VSS", | |
| "Y", | |
| "Z", | |
| ] | |
| ) | |
| if self.config.name == "es" | |
| else datasets.features.ClassLabel( | |
| names=["Adj", "Adv", "Art", "Conj", "Int", "Misc", "N", "Num", "Prep", "Pron", "Punc", "V"] | |
| ) | |
| ), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-PER", | |
| "I-PER", | |
| "B-ORG", | |
| "I-ORG", | |
| "B-LOC", | |
| "I-LOC", | |
| "B-MISC", | |
| "I-MISC", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://www.aclweb.org/anthology/W02-2024/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| "dev": f"{_URL}{_DEV_FILE}", | |
| "test": f"{_URL}{_TEST_FILE}", | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="latin-1") as f: | |
| guid = 0 | |
| tokens = [] | |
| pos_tags = [] | |
| ner_tags = [] | |
| for line in f: | |
| if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
| if tokens: | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "pos_tags": pos_tags, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 | |
| tokens = [] | |
| pos_tags = [] | |
| ner_tags = [] | |
| else: | |
| # conll2002 tokens are space separated | |
| splits = line.split(" ") | |
| tokens.append(splits[0]) | |
| pos_tags.append(splits[1]) | |
| ner_tags.append(splits[2].rstrip()) | |
| # last example | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "pos_tags": pos_tags, | |
| "ner_tags": ner_tags, | |
| } | |