import numpy as np import torch from modules import images, shared from modules.devices import device, dtype_vae, torch_gc from modules.processing import StableDiffusionProcessingImg2Img from modules.sd_samplers_common import (approximation_indexes, images_tensor_to_samples) from scripts.animatediff_logger import logger_animatediff as logger from scripts.animatediff_ui import AnimateDiffProcess class AnimateDiffI2VLatent: def randomize( self, p: StableDiffusionProcessingImg2Img, params: AnimateDiffProcess ): # Get init_alpha init_alpha = [ 1 - pow(i, params.latent_power) / params.latent_scale for i in range(params.video_length) ] logger.info(f"Randomizing init_latent according to {init_alpha}.") init_alpha = torch.tensor(init_alpha, dtype=torch.float32, device=device)[ :, None, None, None ] init_alpha[init_alpha < 0] = 0 if params.last_frame is not None: last_frame = params.last_frame if type(last_frame) == str: from modules.api.api import decode_base64_to_image last_frame = decode_base64_to_image(last_frame) # Get last_alpha last_alpha = [ 1 - pow(i, params.latent_power_last) / params.latent_scale_last for i in range(params.video_length) ] last_alpha.reverse() logger.info(f"Randomizing last_latent according to {last_alpha}.") last_alpha = torch.tensor(last_alpha, dtype=torch.float32, device=device)[ :, None, None, None ] last_alpha[last_alpha < 0] = 0 # Normalize alpha sum_alpha = init_alpha + last_alpha mask_alpha = sum_alpha > 1 scaling_factor = 1 / sum_alpha[mask_alpha] init_alpha[mask_alpha] *= scaling_factor last_alpha[mask_alpha] *= scaling_factor init_alpha[0] = 1 init_alpha[-1] = 0 last_alpha[0] = 0 last_alpha[-1] = 1 # Calculate last_latent if p.resize_mode != 3: last_frame = images.resize_image( p.resize_mode, last_frame, p.width, p.height ) last_frame = np.array(last_frame).astype(np.float32) / 255.0 last_frame = np.moveaxis(last_frame, 2, 0)[None, ...] last_frame = torch.from_numpy(last_frame).to(device).to(dtype_vae) last_latent = images_tensor_to_samples( last_frame, approximation_indexes.get(shared.opts.sd_vae_encode_method), p.sd_model, ) torch_gc() if p.resize_mode == 3: opt_f = 8 last_latent = torch.nn.functional.interpolate( last_latent, size=(p.height // opt_f, p.width // opt_f), mode="bilinear", ) # Modify init_latent p.init_latent = ( p.init_latent * init_alpha + last_latent * last_alpha + p.rng.next() * (1 - init_alpha - last_alpha) ) else: p.init_latent = p.init_latent * init_alpha + p.rng.next() * (1 - init_alpha)