from difflib import restore import random import copy from pprint import pprint import re from typing import Union import torch from modules import devices, shared, extra_networks, sd_hijack from modules.script_callbacks import CFGDenoisedParams, CFGDenoiserParams from torchvision.transforms import InterpolationMode, Resize # Mask. import scripts.attention as att from scripts.regions import floatdef from scripts.attention import makerrandman islora = True in_hr = False layer_name = "lora_layer_name" orig_Linear_forward = None orig_lora_functional = False lactive = False labug =False MINID = 1000 MAXID = 10000 LORAID = MINID # Discriminator for repeated lora usage / across gens, presumably. def setuploras(self): global lactive, labug, islora, orig_Linear_forward, orig_lora_functional, layer_name lactive = True labug = self.debug islora = self.isbefore15 layer_name = self.layer_name orig_lora_functional = orig_lora_functional = shared.opts.lora_functional if hasattr(shared.opts,"lora_functional") else False try: if 150 <= self.ui_version <= 159 or self.slowlora: shared.opts.lora_functional = False else: shared.opts.lora_functional = True except: pass is15 = 150 <= self.ui_version <= 159 orig_Linear_forward = torch.nn.Linear.forward torch.nn.Linear.forward = h15_Linear_forward if is15 else h_Linear_forward def cloneparams(orig,target): target.x = orig.x.clone() target.image_cond = orig.image_cond.clone() target.sigma = orig.sigma.clone() ################################################### ###### Latent Method denoise call back # Using the AND syntax with shared.batch_cond_uncond = False # the U-NET is calculated (the number of prompts divided by AND) + 1 times. # This means that the calculation is performed for the area + 1 times. # This mechanism is used to apply LoRA by region by changing the LoRA application rate for each U-NET calculation. # The problem here is that in the web-ui system, if more than two batch sizes are set, # a problem will occur if the number of areas and the batch size are not the same. # If the batch is 1 for 3 areas, the calculation is performed 4 times: Area1, Area2, Area3, and Negative. # However, if the batch is 2, # [Batch1-Area1, Batch1-Area2] # [Batch1-Area3, Batch2-Area1] # [Batch2-Area2, Batch2-Area3] # [Batch1-Negative, Batch2-Negative] # and the areas of simultaneous computation will be different. # Therefore, it is necessary to change the order in advance. # [Batch1-Area1, Batch1-Area2] -> [Batch1-Area1, Batch2-Area1] # [Batch1-Area3, Batch2-Area1] -> [Batch1-Area2, Batch2-Area2] # [Batch2-Area2, Batch2-Area3] -> [Batch1-Area3, Batch2-Area3] def denoiser_callback_s(self, params: CFGDenoiserParams): if "Pro" in self.mode: # in Prompt mode, make masks from sum of attension maps if self.x == None : cloneparams(params,self) # return to step 0 if mask is ready self.step = params.sampling_step self.pfirst = True lim = 1 if self.isxl else 3 if len(att.pmaskshw) > lim: self.filters = [] for b in range(self.batch_size): allmask = [] basemask = None for t, th, bratio in zip(self.pe, self.th, self.bratios): key = f"{t}-{b}" _, _, mask = att.makepmask(att.pmasks[key], params.x.shape[2], params.x.shape[3], th, self.step, bratio = bratio) mask = mask.repeat(params.x.shape[1],1,1) basemask = 1 - mask if basemask is None else basemask - mask if self.ex: for l in range(len(allmask)): mt = allmask[l] - mask allmask[l] = torch.where(mt > 0, 1,0) allmask.append(mask) if not self.ex: sum = torch.stack(allmask, dim=0).sum(dim=0) sum = torch.where(sum == 0, 1 , sum) allmask = [mask / sum for mask in allmask] basemask = torch.where(basemask > 0, 1, 0) allmask.insert(0,basemask) self.filters.extend(allmask) att.maskready = True for t, th, bratio in zip(self.pe, self.th, self.bratios): allmask = [] for hw in att.pmaskshw: masks = None for b in range(self.batch_size): key = f"{t}-{b}" _, mask, _ = att.makepmask(att.pmasks[key], hw[0], hw[1], th, self.step, bratio = bratio) mask = mask.unsqueeze(0).unsqueeze(-1) masks = mask if b ==0 else torch.cat((masks,mask),dim=0) allmask.append(mask) att.pmasksf[key] = allmask att.maskready = True if not self.rebacked: cloneparams(self,params) params.sampling_step = 0 self.rebacked = True if "La" in self.calc: self.condi = 0 global in_hr, regioner regioner.step = params.sampling_step in_hr = self.in_hr regioner.u_count = 0 if "u_list" not in self.log.keys() and hasattr(regioner,"u_llist"): self.log["u_list"] = regioner.u_llist.copy() if "u_list_hr" not in self.log.keys() and hasattr(regioner,"u_llist") and in_hr: self.log["u_list_hr"] = regioner.u_llist.copy() xt = params.x.clone() ict = params.image_cond.clone() st = params.sigma.clone() batch = self.batch_size areas = xt.shape[0] // batch -1 # SBM Stale version workaround. if hasattr(params,"text_cond"): if "DictWithShape" in params.text_cond.__class__.__name__: ct = {} for key in params.text_cond.keys(): ct[key] = params.text_cond[key].clone() else: ct = params.text_cond.clone() for a in range(areas): for b in range(batch): params.x[b+a*batch] = xt[a + b * areas] params.image_cond[b+a*batch] = ict[a + b * areas] params.sigma[b+a*batch] = st[a + b * areas] # SBM Stale version workaround. if hasattr(params,"text_cond"): if "DictWithShape" in params.text_cond.__class__.__name__: for key in params.text_cond.keys(): params.text_cond[key][b+a*batch] = ct[key][a + b * areas] else: params.text_cond[b+a*batch] = ct[a + b * areas] def denoised_callback_s(self, params: CFGDenoisedParams): batch = self.batch_size x = params.x xt = params.x.clone() areas = xt.shape[0] // batch - 1 if "La" in self.calc: # x.shape = [batch_size, C, H // 8, W // 8] if not "Pro" in self.mode: indrebuild = self.filters == [] or self.filters[0].size() != x[0].size() if indrebuild: if "Ran" in self.mode: if self.filters == []: self.filters = [self.ranbase] + self.ransors if self.usebase else self.ransors elif self.filters[0][:,:].size() != x[0,0,:,:].size(): self.filters = hrchange(self.ransors,x.shape[2], x.shape[3]) else: if "Mask" in self.mode: masks = (self.regmasks,self.regbase) else: masks = self.aratios #makefilters(c,h,w,masks,mode,usebase,bratios,indmask = None) self.filters = makefilters(x.shape[1], x.shape[2], x.shape[3],masks, self.mode, self.usebase, self.bratios, "Mas" in self.mode) self.filters = [f for f in self.filters]*batch else: if not att.maskready: self.filters = [1,*[0 for a in range(areas - 1)]] * batch if self.debug : print("filterlength : ",len(self.filters)) for b in range(batch): for a in range(areas) : fil = self.filters[a + b*areas] if self.debug : print(f"x = {x.size()}i = {a + b*areas}, j = {b + a*batch}, cond = {a + b*areas},filsum = {fil if type(fil) is int else torch.sum(fil)}, uncon = {x.size()[0]+(b-batch)}") x[a + b * areas, :, :, :] = xt[b + a*batch, :, :, :] * fil + x[x.size()[0]+(b-batch), :, :, :] * (1 - fil) if params.total_sampling_steps == params.sampling_step + 2: if self.rps is not None and self.diff: if self.rps.latent is None: self.rps.latent = x.clone() return elif self.rps.latent.shape[2:] != x.shape[2:] and self.rps.latent_hr is None: self.rps.latent_hr = x.clone() return else: for b in range(batch): for a in range(areas) : fil = self.filters[a+1] orig = self.rps.latent if self.rps.latent.shape[2:] == x.shape[2:] else self.rps.latent_hr if self.debug : print(f"x = {x.size()}i = {a + b*areas}, j = {b + a*batch}, cond = {a + b*areas},filsum = {fil if type(fil) is int else torch.sum(fil)}, uncon = {x.size()[0]+(b-batch)}") #print("1",type(self.rps.latent),type(fil)) x[:,:,:,:] = orig[:,:,:,:] * (1 - fil) + x[:,:,:,:] * fil #if params.total_sampling_steps - 7 == params.sampling_step + 2: if att.maskready: if self.rps is not None and self.diff: if self.rps.latent is not None: if self.rps.latent.shape[2:] != x.shape[2:]: if self.rps.latent_hr is None: return for b in range(batch): for a in range(areas) : fil = self.filters[a+1] orig = self.rps.latent if self.rps.latent.shape[2:] == x.shape[2:] else self.rps.latent_hr if self.debug : print(f"x = {x.size()}i = {a + b*areas}, j = {b + a*batch}, cond = {a + b*areas},filsum = {fil if type(fil) is int else torch.sum(fil)}, uncon = {x.size()[0]+(b-batch)}") #print("2",type(self.rps.latent),type(fil)) x[:,:,:,:] = orig[:,:,:,:] * (1 - fil) + x[:,:,:,:] * fil if params.sampling_step == 0 and self.in_hr: if self.rps is not None and self.diff: if self.rps.latent is not None: if self.rps.latent.shape[2:] != x.shape[2:] and self.rps.latent_hr is None: return for b in range(batch): for a in range(areas) : fil = self.filters[a+1] orig = self.rps.latent if self.rps.latent.shape[2:] == x.shape[2:] else self.rps.latent_hr if self.debug : print(f"x = {x.size()}i = {a + b*areas}, j = {b + a*batch}, cond = {a + b*areas},filsum = {fil if type(fil) is int else torch.sum(fil)}, uncon = {x.size()[0]+(b-batch)}") #print("3",type(self.rps.latent),type(fil)) x[:,:,:,:] = orig[:,:,:,:] * (1 - fil) + x[:,:,:,:] * fil ###################################################### ##### Latent Method def hrchange(filters,h, w): out = [] for filter in filters: out.append(makerrandman(filter,h,w,True)) return out # Remove tags from called lora names. flokey = lambda x: (x.split("added_by_regional_prompter")[0] .split("added_by_lora_block_weight")[0].split("_in_LBW")[0].split("_in_RP")[0]) def lora_namer(self, p, lnter, lnur): ldict_u = {} ldict_te = {} lorder = [] # Loras call order for matching with u/te lists. import lora as loraclass for lora in loraclass.loaded_loras: ldict_u[lora.name] =lora.multiplier if self.isbefore15 else lora.unet_multiplier ldict_te[lora.name] =lora.multiplier if self.isbefore15 else lora.te_multiplier subprompts = self.current_prompts[0].split("AND") ldictlist_u =[ldict_u.copy() for i in range(len(subprompts)+1)] ldictlist_te =[ldict_te.copy() for i in range(len(subprompts)+1)] for i, prompt in enumerate(subprompts): _, extranets = extra_networks.parse_prompts([prompt]) calledloras = extranets["lora"] names = "" tdict = {} for called in calledloras: names = names + called.items[0] tdict[called.items[0]] = syntaxdealer(called.items,"unet=",1) for key in ldictlist_u[i].keys(): shin_key = flokey(key) if shin_key in names: ldictlist_u[i+1][key] = float(tdict[shin_key]) ldictlist_te[i+1][key] = float(tdict[shin_key]) if key not in lorder: lorder.append(key) else: ldictlist_u[i+1][key] = 0 ldictlist_te[i+1][key] = 0 if self.debug: print("Regioner lorder: ",lorder) global regioner regioner.__init__(self.lstop,self.lstop_hr) u_llist = [d.copy() for d in ldictlist_u[1:]] u_llist.append(ldictlist_u[0].copy()) regioner.te_llist = ldictlist_te regioner.u_llist = u_llist regioner.ndeleter(lnter, lnur, lorder) if self.debug: print("LoRA regioner : TE list",regioner.te_llist) print("LoRA regioner : U list",regioner.u_llist) def syntaxdealer(items,type,index): #type "unet=", "x=", "lwbe=" for item in items: if type in item: if "@" in item:return 1 #for loractl return item.replace(type,"") return items[index] if "@" not in items[index] else 1 def makefilters(c,h,w,masks,mode,usebase,bratios,indmask): if indmask: (regmasks, regbase) = masks filters = [] x = torch.zeros(c, h, w).to(devices.device) if usebase: x0 = torch.zeros(c, h, w).to(devices.device) i=0 if indmask: ftrans = Resize((h, w), interpolation = InterpolationMode("nearest")) for rmask, bratio in zip(regmasks,bratios[0]): # Resize mask to current dims. # Since it's a mask, we prefer a binary value, nearest is the only option. rmask2 = ftrans(rmask.reshape([1, *rmask.shape])) # Requires dimensions N,C,{d}. rmask2 = rmask2.reshape([1, h, w]) fx = x.clone() if usebase: fx[:,:,:] = fx + rmask2 * (1 - bratio) x0[:,:,:] = x0 + rmask2 * bratio else: fx[:,:,:] = fx + rmask2 * 1 filters.append(fx) if usebase: # Add base to x0. rmask = regbase rmask2 = ftrans(rmask.reshape([1, *rmask.shape])) # Requires dimensions N,C,{d}. rmask2 = rmask2.reshape([1, h, w]) x0 = x0 + rmask2 else: for drow in masks: for dcell in drow.cols: fx = x.clone() if "Horizontal" in mode: if usebase: fx[:,int(h*drow.st):int(h*drow.ed),int(w*dcell.st):int(w*dcell.ed)] = 1 - dcell.base x0[:,int(h*drow.st):int(h*drow.ed),int(w*dcell.st):int(w*dcell.ed)] = dcell.base else: fx[:,int(h*drow.st):int(h*drow.ed),int(w*dcell.st):int(w*dcell.ed)] = 1 elif "Vertical" in mode: if usebase: fx[:,int(h*dcell.st):int(h*dcell.ed),int(w*drow.st):int(w*drow.ed)] = 1 - dcell.base x0[:,int(h*dcell.st):int(h*dcell.ed),int(w*drow.st):int(w*drow.ed)] = dcell.base else: fx[:,int(h*dcell.st):int(h*dcell.ed),int(w*drow.st):int(w*drow.ed)] = 1 filters.append(fx) i +=1 if usebase : filters.insert(0,x0) if labug : print(i,len(filters)) return filters ###################################################### ##### Latent Method LoRA changer TE_START_NAME = "transformer_text_model_encoder_layers_0_self_attn_q_proj" UNET_START_NAME = "diffusion_model_time_embed_0" TE_START_NAME_XL = "0_transformer_text_model_encoder_layers_0_self_attn_q_proj" class LoRARegioner: def __init__(self,stop=0,stop_hr=0): self.te_count = 0 self.u_count = 0 self.te_llist = [{}] self.u_llist = [{}] self.mlist = {} self.ctl = False self.step = 0 self.stop = stop self.stop_hr = stop_hr try: import lora_ctl_network as ctl self.ctlweight = copy.deepcopy(ctl.lora_weights) for set in self.ctlweight.values(): for weight in set.values(): if type(weight) == list: self.ctl = True except: pass def expand_del(self, val, lorder): """Broadcast single / comma separated val to lora list. """ lval = val.split(",") if len(lval) > len(lorder): lval = lval[:len(lorder)] lval = [floatdef(v, 0) for v in lval] if len(lval) < len(lorder): # Propagate difference. lval.extend([lval[-1]] * (len(lorder) - len(lval))) return lval def ndeleter(self, lnter, lnur, lorder = None): """Multiply global weights by 0:1 factor. Can be any value, negative too, but doesn't help much. """ if lorder is None: lkeys = self.te_llist[0].keys() else: lkeys = lorder lnter = self.expand_del(lnter, lkeys) for (key, val) in zip(lkeys, lnter): self.te_llist[0][key] *= val if lorder is None: lkeys = self.u_llist[-1].keys() else: lkeys = lorder lnur = self.expand_del(lnur, lkeys) for (key, val) in zip(lkeys, lnur): self.u_llist[-1][key] *= val def search_key(self,lora,i,xlist): lorakey = lora.loaded_loras[i].name if lorakey not in xlist.keys(): shin_key = flokey(lorakey) picked = False for mlkey in xlist.keys(): if mlkey.startswith(shin_key): lorakey = mlkey picked = True if not picked: print(f"key is not found in:{xlist.keys()}") return lorakey def te_start(self): self.mlist = self.te_llist[self.te_count % len(self.te_llist)] if self.mlist == {}: return self.te_count += 1 import lora for i in range(len(lora.loaded_loras)): lorakey = self.search_key(lora,i,self.mlist) lora.loaded_loras[i].multiplier = self.mlist[lorakey] lora.loaded_loras[i].te_multiplier = self.mlist[lorakey] def u_start(self): if labug : print("u_count",self.u_count ,"u_count '%' divide", self.u_count % len(self.u_llist)) self.mlist = self.u_llist[self.u_count % len(self.u_llist)] if self.mlist == {}: return self.u_count += 1 stopstep = self.stop_hr if in_hr else self.stop import lora for i in range(len(lora.loaded_loras)): lorakey = self.search_key(lora,i,self.mlist) lora.loaded_loras[i].multiplier = 0 if self.step + 2 > stopstep and stopstep else self.mlist[lorakey] lora.loaded_loras[i].unet_multiplier = 0 if self.step + 2 > stopstep and stopstep else self.mlist[lorakey] if labug :print(lorakey,lora.loaded_loras[i].multiplier,lora.loaded_loras[i].multiplier ) if self.ctl: import lora_ctl_network as ctl key = "hrunet" if in_hr else "unet" if self.mlist[lorakey] == 0 or (self.step + 2 > stopstep and stopstep): ctl.lora_weights[lorakey][key] = [[0],[0]] if labug :print(ctl.lora_weights[lorakey]) else: if key in self.ctlweight[lorakey].keys(): ctl.lora_weights[lorakey][key] = self.ctlweight[lorakey][key] else: ctl.lora_weights[lorakey][key] = self.ctlweight[lorakey]["unet"] if labug :print(ctl.lora_weights[lorakey]) def reset(self): self.te_count = 0 self.u_count = 0 regioner = LoRARegioner() ############################################################ ##### for new lora apply method in web-ui def h_Linear_forward(self, input): changethelora(getattr(self, layer_name, None)) if islora: import lora return lora.lora_forward(self, input, torch.nn.Linear_forward_before_lora) else: import networks if shared.opts.lora_functional: return networks.network_forward(self, input, networks.originals.Linear_forward) networks.network_apply_weights(self) return networks.originals.Linear_forward(self, input) def h15_Linear_forward(self, input): changethelora(getattr(self, layer_name, None)) if islora: import lora return lora.lora_forward(self, input, torch.nn.Linear_forward_before_lora) else: import networks if shared.opts.lora_functional: return networks.network_forward(self, input, networks.network_Linear_forward) networks.network_apply_weights(self) return torch.nn.Linear_forward_before_network(self, input) def changethelora(name): if lactive: global regioner if name == TE_START_NAME or name == TE_START_NAME_XL: regioner.te_start() elif name == UNET_START_NAME: regioner.u_start() LORAANDSOON = { "LoraHadaModule" : "w1a", "LycoHadaModule" : "w1a", "NetworkModuleHada": "w1a", "FullModule" : "weight", "NetworkModuleFull": "weight", "IA3Module" : "w", "NetworkModuleIa3" : "w", "LoraKronModule" : "w1", "LycoKronModule" : "w1", "NetworkModuleLokr": "w1", } def changethedevice(module): ltype = type(module).__name__ if ltype == "LoraUpDownModule" or ltype == "LycoUpDownModule" : if hasattr(module,"up_model") : module.up_model.weight = torch.nn.Parameter(module.up_model.weight.to(devices.device, dtype = torch.float)) module.down_model.weight = torch.nn.Parameter(module.down_model.weight.to(devices.device, dtype=torch.float)) else: module.up.weight = torch.nn.Parameter(module.up.weight.to(devices.device, dtype = torch.float)) if hasattr(module.down, "weight"): module.down.weight = torch.nn.Parameter(module.down.weight.to(devices.device, dtype=torch.float)) elif ltype == "LoraHadaModule" or ltype == "LycoHadaModule" or ltype == "NetworkModuleHada": module.w1a = torch.nn.Parameter(module.w1a.to(devices.device, dtype=torch.float)) module.w1b = torch.nn.Parameter(module.w1b.to(devices.device, dtype=torch.float)) module.w2a = torch.nn.Parameter(module.w2a.to(devices.device, dtype=torch.float)) module.w2b = torch.nn.Parameter(module.w2b.to(devices.device, dtype=torch.float)) if module.t1 is not None: module.t1 = torch.nn.Parameter(module.t1.to(devices.device, dtype=torch.float)) if module.t2 is not None: module.t2 = torch.nn.Parameter(module.t2.to(devices.device, dtype=torch.float)) elif ltype == "FullModule" or ltype == "NetworkModuleFull": module.weight = torch.nn.Parameter(module.weight.to(devices.device, dtype=torch.float)) if hasattr(module, 'bias') and module.bias != None: module.bias = torch.nn.Parameter(module.bias.to(devices.device, dtype=torch.float)) def unloadlorafowards(p): global orig_Linear_forward, lactive, labug lactive = labug = False try: shared.opts.lora_functional = orig_lora_functional except: pass emb_db = sd_hijack.model_hijack.embedding_db import lora for net in lora.loaded_loras: if hasattr(net,"bundle_embeddings"): for emb_name, embedding in net.bundle_embeddings.items(): if embedding.loaded: emb_db.register_embedding_by_name(None, shared.sd_model, emb_name) lora.loaded_loras.clear() if orig_Linear_forward != None : torch.nn.Linear.forward = orig_Linear_forward orig_Linear_forward = None