PennyJX commited on
Commit
b5f648f
·
verified ·
1 Parent(s): 241d9d1

Delete modules/uni_pc/sampler.py

Browse files
Files changed (1) hide show
  1. modules/uni_pc/sampler.py +0 -101
modules/uni_pc/sampler.py DELETED
@@ -1,101 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
-
5
- from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
6
- from modules import shared, devices
7
-
8
-
9
- class UniPCSampler(object):
10
- def __init__(self, model, **kwargs):
11
- super().__init__()
12
- self.model = model
13
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
14
- self.before_sample = None
15
- self.after_sample = None
16
- self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
17
-
18
- def register_buffer(self, name, attr):
19
- if type(attr) == torch.Tensor:
20
- if attr.device != devices.device:
21
- attr = attr.to(devices.device)
22
- setattr(self, name, attr)
23
-
24
- def set_hooks(self, before_sample, after_sample, after_update):
25
- self.before_sample = before_sample
26
- self.after_sample = after_sample
27
- self.after_update = after_update
28
-
29
- @torch.no_grad()
30
- def sample(self,
31
- S,
32
- batch_size,
33
- shape,
34
- conditioning=None,
35
- callback=None,
36
- normals_sequence=None,
37
- img_callback=None,
38
- quantize_x0=False,
39
- eta=0.,
40
- mask=None,
41
- x0=None,
42
- temperature=1.,
43
- noise_dropout=0.,
44
- score_corrector=None,
45
- corrector_kwargs=None,
46
- verbose=True,
47
- x_T=None,
48
- log_every_t=100,
49
- unconditional_guidance_scale=1.,
50
- unconditional_conditioning=None,
51
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
52
- **kwargs
53
- ):
54
- if conditioning is not None:
55
- if isinstance(conditioning, dict):
56
- ctmp = conditioning[list(conditioning.keys())[0]]
57
- while isinstance(ctmp, list):
58
- ctmp = ctmp[0]
59
- cbs = ctmp.shape[0]
60
- if cbs != batch_size:
61
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
62
-
63
- elif isinstance(conditioning, list):
64
- for ctmp in conditioning:
65
- if ctmp.shape[0] != batch_size:
66
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
67
-
68
- else:
69
- if conditioning.shape[0] != batch_size:
70
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
71
-
72
- # sampling
73
- C, H, W = shape
74
- size = (batch_size, C, H, W)
75
- # print(f'Data shape for UniPC sampling is {size}')
76
-
77
- device = self.model.betas.device
78
- if x_T is None:
79
- img = torch.randn(size, device=device)
80
- else:
81
- img = x_T
82
-
83
- ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
84
-
85
- # SD 1.X is "noise", SD 2.X is "v"
86
- model_type = "v" if self.model.parameterization == "v" else "noise"
87
-
88
- model_fn = model_wrapper(
89
- lambda x, t, c: self.model.apply_model(x, t, c),
90
- ns,
91
- model_type=model_type,
92
- guidance_type="classifier-free",
93
- #condition=conditioning,
94
- #unconditional_condition=unconditional_conditioning,
95
- guidance_scale=unconditional_guidance_scale,
96
- )
97
-
98
- uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
99
- x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
100
-
101
- return x.to(device), None