|
|
|
|
|
import torch |
|
|
|
from k_diffusion import utils, sampling |
|
from k_diffusion.external import DiscreteEpsDDPMDenoiser |
|
from k_diffusion.sampling import default_noise_sampler, trange |
|
|
|
from modules import shared, sd_samplers_cfg_denoiser, sd_samplers_kdiffusion |
|
from scripts.animatediff_logger import logger_animatediff as logger |
|
|
|
|
|
class LCMCompVisDenoiser(DiscreteEpsDDPMDenoiser): |
|
def __init__(self, model): |
|
timesteps = 1000 |
|
beta_start = 0.00085 |
|
beta_end = 0.012 |
|
|
|
betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2 |
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
|
|
original_timesteps = 50 |
|
self.skip_steps = timesteps // original_timesteps |
|
|
|
|
|
alphas_cumprod_valid = torch.zeros((original_timesteps), dtype=torch.float32, device=model.device) |
|
for x in range(original_timesteps): |
|
alphas_cumprod_valid[original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps] |
|
|
|
super().__init__(model, alphas_cumprod_valid, quantize=None) |
|
|
|
|
|
def get_sigmas(self, n=None, sgm=False): |
|
if n is None: |
|
return sampling.append_zero(self.sigmas.flip(0)) |
|
|
|
start = self.sigma_to_t(self.sigma_max) |
|
end = self.sigma_to_t(self.sigma_min) |
|
|
|
if sgm: |
|
t = torch.linspace(start, end, n + 1, device=shared.sd_model.device)[:-1] |
|
else: |
|
t = torch.linspace(start, end, n, device=shared.sd_model.device) |
|
|
|
return sampling.append_zero(self.t_to_sigma(t)) |
|
|
|
|
|
def sigma_to_t(self, sigma, quantize=None): |
|
log_sigma = sigma.log() |
|
dists = log_sigma - self.log_sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1) |
|
|
|
|
|
def t_to_sigma(self, timestep): |
|
t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1)) |
|
return super().t_to_sigma(t) |
|
|
|
|
|
def get_eps(self, *args, **kwargs): |
|
return self.inner_model.apply_model(*args, **kwargs) |
|
|
|
|
|
def get_scaled_out(self, sigma, output, input): |
|
sigma_data = 0.5 |
|
scaled_timestep = utils.append_dims(self.sigma_to_t(sigma), output.ndim) * 10.0 |
|
|
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) |
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 |
|
|
|
return c_out * output + c_skip * input |
|
|
|
|
|
def forward(self, input, sigma, **kwargs): |
|
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] |
|
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) |
|
return self.get_scaled_out(sigma, input + eps * c_out, input) |
|
|
|
|
|
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): |
|
extra_args = {} if extra_args is None else extra_args |
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler |
|
s_in = x.new_ones([x.shape[0]]) |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
|
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
|
|
x = denoised |
|
if sigmas[i + 1] > 0: |
|
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) |
|
return x |
|
|
|
|
|
class CFGDenoiserLCM(sd_samplers_cfg_denoiser.CFGDenoiser): |
|
@property |
|
def inner_model(self): |
|
if self.model_wrap is None: |
|
denoiser = LCMCompVisDenoiser |
|
self.model_wrap = denoiser(shared.sd_model) |
|
|
|
return self.model_wrap |
|
|
|
|
|
class LCMSampler(sd_samplers_kdiffusion.KDiffusionSampler): |
|
def __init__(self, funcname, sd_model, options=None): |
|
super().__init__(funcname, sd_model, options) |
|
self.model_wrap_cfg = CFGDenoiserLCM(self) |
|
self.model_wrap = self.model_wrap_cfg.inner_model |
|
|
|
|
|
class AnimateDiffLCM: |
|
lcm_ui_injected = False |
|
|
|
|
|
@staticmethod |
|
def hack_kdiff_ui(): |
|
if shared.opts.data.get("animatediff_disable_lcm", False): |
|
return |
|
|
|
if AnimateDiffLCM.lcm_ui_injected: |
|
logger.info(f"LCM UI already injected.") |
|
return |
|
|
|
logger.info(f"Injecting LCM to UI.") |
|
from modules import sd_samplers, sd_samplers_common |
|
samplers_lcm = [('LCM', sample_lcm, ['k_lcm'], {})] |
|
samplers_data_lcm = [ |
|
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: LCMSampler(funcname, model), aliases, options) |
|
for label, funcname, aliases, options in samplers_lcm |
|
] |
|
sd_samplers.all_samplers.extend(samplers_data_lcm) |
|
sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers} |
|
sd_samplers.set_samplers() |
|
AnimateDiffLCM.lcm_ui_injected = True |
|
|