PennyJX's picture
Upload 22 files
4304e49 verified
raw
history blame
24.9 kB
import math
from pprint import pprint
import ldm.modules.attention as atm
import torch
import torchvision
import torchvision.transforms.functional as F
from torchvision.transforms import InterpolationMode, Resize # Mask.
TOKENSCON = 77
TOKENS = 75
def db(self,text):
if self.debug:
print(text)
def main_forward(module,x,context,mask,divide,isvanilla = False,userpp = False,tokens=[],width = 64,height = 64,step = 0, isxl = False, negpip = None, inhr = None):
# Forward.
if negpip:
conds, contokens = negpip
context = torch.cat((context,conds),1)
h = module.heads
if isvanilla: # SBM Ddim / plms have the context split ahead along with x.
pass
else: # SBM I think divide may be redundant.
h = h // divide
q = module.to_q(x)
context = atm.default(context, x)
k = module.to_k(context)
v = module.to_v(context)
q, k, v = map(lambda t: atm.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = atm.einsum('b i d, b j d -> b i j', q, k) * module.scale
if negpip:
conds, contokens = negpip
if contokens:
for contoken in contokens:
start = (v.shape[1]//77 - len(contokens)) * 77
v[:,start+1:start+contoken,:] = -v[:,start+1:start+contoken,:]
if atm.exists(mask):
mask = atm.rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = atm.repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
attn = sim.softmax(dim=-1)
## for prompt mode make basemask from attention maps
global pmaskshw,pmasks
if inhr and not hiresfinished: hiresscaler(height,width,attn)
if userpp and step > 0:
for b in range(attn.shape[0] // 8):
if pmaskshw == []:
pmaskshw = [(height,width)]
elif (height,width) not in pmaskshw:
pmaskshw.append((height,width))
for t in tokens:
power = 4 if isxl else 1.2
add = attn[8*b:8*(b+1),:,t[0]:t[0]+len(t)]**power
add = torch.sum(add,dim = 2)
t = f"{t}-{b}"
if t not in pmasks:
pmasks[t] = add
else:
if pmasks[t].shape[1] != add.shape[1]:
add = add.view(8,height,width)
add = F.resize(add,pmaskshw[0])
add = add.reshape_as(pmasks[t])
pmasks[t] = pmasks[t] + add
out = atm.einsum('b i j, b j d -> b i d', attn, v)
out = atm.rearrange(out, '(b h) n d -> b n (h d)', h=h)
out = module.to_out(out)
return out
def hook_forwards(self, root_module: torch.nn.Module, remove=False):
self.hooked = True if not remove else False
for name, module in root_module.named_modules():
if "attn2" in name and module.__class__.__name__ == "CrossAttention":
module.forward = hook_forward(self, module)
if remove:
del module.forward
################################################################################
##### Attention mode
def hook_forward(self, module):
def forward(x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
if self.debug:
print("input : ", x.size())
print("tokens : ", context.size())
print("module : ", getattr(module, self.layer_name,None))
if "conds" in self.log:
if self.log["conds"] != context.size():
self.log["conds2"] = context.size()
else:
self.log["conds"] = context.size()
if self.xsize == 0: self.xsize = x.shape[1]
if "input" in getattr(module, self.layer_name,""):
if x.shape[1] > self.xsize:
self.in_hr = True
height = self.hr_h if self.in_hr and self.hr else self.h
width = self.hr_w if self.in_hr and self.hr else self.w
xs = x.size()[1]
scale = round(math.sqrt(height * width / xs))
dsh = round(height / scale)
dsw = round(width / scale)
ha, wa = xs % dsh, xs % dsw
if ha == 0:
dsw = int(xs / dsh)
elif wa == 0:
dsh = int(xs / dsw)
contexts = context.clone()
# SBM Matrix mode.
def matsepcalc(x,contexts,mask,pn,divide):
db(self,f"in MatSepCalc")
h_states = []
xs = x.size()[1]
(dsh,dsw) = split_dims(xs, height, width, self)
if "Horizontal" in self.mode: # Map columns / rows first to outer / inner.
dsout = dsw
dsin = dsh
elif "Vertical" in self.mode:
dsout = dsh
dsin = dsw
tll = self.pt if pn else self.nt
i = 0
outb = None
if self.usebase:
context = contexts[:,tll[i][0] * TOKENSCON:tll[i][1] * TOKENSCON,:]
# SBM Controlnet sends extra conds at the end of context, apply it to all regions.
cnet_ext = contexts.shape[1] - (contexts.shape[1] // TOKENSCON) * TOKENSCON
if cnet_ext > 0:
context = torch.cat([context,contexts[:,-cnet_ext:,:]],dim = 1)
negpip = negpipdealer(i,pn)
i = i + 1
out = main_forward(module, x, context, mask, divide, self.isvanilla,userpp =True,step = self.step, isxl = self.isxl, negpip = negpip)
if len(self.nt) == 1 and not pn:
db(self,"return out for NP")
return out
# if self.usebase:
outb = out.clone()
outb = outb.reshape(outb.size()[0], dsh, dsw, outb.size()[2]) if "Ran" not in self.mode else outb
sumout = 0
db(self,f"tokens : {tll},pn : {pn}")
db(self,[r for r in self.aratios])
for drow in self.aratios:
v_states = []
sumin = 0
for dcell in drow.cols:
# Grabs a set of tokens depending on number of unrelated breaks.
context = contexts[:,tll[i][0] * TOKENSCON:tll[i][1] * TOKENSCON,:]
# SBM Controlnet sends extra conds at the end of context, apply it to all regions.
cnet_ext = contexts.shape[1] - (contexts.shape[1] // TOKENSCON) * TOKENSCON
if cnet_ext > 0:
context = torch.cat([context,contexts[:,-cnet_ext:,:]],dim = 1)
negpip = negpipdealer(i,pn)
db(self,f"tokens : {tll[i][0]*TOKENSCON}-{tll[i][1]*TOKENSCON}")
i = i + 1 + dcell.breaks
# if i >= contexts.size()[1]:
# indlast = True
out = main_forward(module, x, context, mask, divide, self.isvanilla,userpp = self.pn, step = self.step, isxl = self.isxl,negpip = negpip)
db(self,f" dcell.breaks : {dcell.breaks}, dcell.ed : {dcell.ed}, dcell.st : {dcell.st}")
if len(self.nt) == 1 and not pn:
db(self,"return out for NP")
return out
# Actual matrix split by region.
if "Ran" in self.mode:
v_states.append(out)
continue
out = out.reshape(out.size()[0], dsh, dsw, out.size()[2]) # convert to main shape.
# if indlast:
addout = 0
addin = 0
sumin = sumin + int(dsin*dcell.ed) - int(dsin*dcell.st)
if dcell.ed >= 0.999:
addin = sumin - dsin
sumout = sumout + int(dsout*drow.ed) - int(dsout*drow.st)
if drow.ed >= 0.999:
addout = sumout - dsout
if "Horizontal" in self.mode:
out = out[:,int(dsh*drow.st) + addout:int(dsh*drow.ed),
int(dsw*dcell.st) + addin:int(dsw*dcell.ed),:]
if self.debug : print(f"{int(dsh*drow.st) + addout}:{int(dsh*drow.ed)},{int(dsw*dcell.st) + addin}:{int(dsw*dcell.ed)}")
if self.usebase :
# outb_t = outb[:,:,int(dsw*drow.st):int(dsw*drow.ed),:].clone()
outb_t = outb[:,int(dsh*drow.st) + addout:int(dsh*drow.ed),
int(dsw*dcell.st) + addin:int(dsw*dcell.ed),:].clone()
out = out * (1 - dcell.base) + outb_t * dcell.base
elif "Vertical" in self.mode: # Cols are the outer list, rows are cells.
out = out[:,int(dsh*dcell.st) + addin:int(dsh*dcell.ed),
int(dsw*drow.st) + addout:int(dsw*drow.ed),:]
db(self,f"{int(dsh*dcell.st) + addin}:{int(dsh*dcell.ed)}-{int(dsw*drow.st) + addout}:{int(dsw*drow.ed)}")
if self.usebase :
# outb_t = outb[:,:,int(dsw*drow.st):int(dsw*drow.ed),:].clone()
outb_t = outb[:,int(dsh*dcell.st) + addin:int(dsh*dcell.ed),
int(dsw*drow.st) + addout:int(dsw*drow.ed),:].clone()
out = out * (1 - dcell.base) + outb_t * dcell.base
db(self,f"sumin:{sumin},sumout:{sumout},dsh:{dsh},dsw:{dsw}")
v_states.append(out)
if self.debug :
for h in v_states:
print(h.size())
if "Horizontal" in self.mode:
ox = torch.cat(v_states,dim = 2) # First concat the cells to rows.
elif "Vertical" in self.mode:
ox = torch.cat(v_states,dim = 1) # Cols first mode, concat to cols.
elif "Ran" in self.mode:
if self.usebase:
ox = outb * makerrandman(self.ranbase,dsh,dsw).view(-1, 1)
ox = torch.zeros_like(v_states[0])
for state, filter in zip(v_states, self.ransors):
filter = makerrandman(filter,dsh,dsw)
ox = ox + state * filter.view(-1, 1)
return ox
h_states.append(ox)
if "Horizontal" in self.mode:
ox = torch.cat(h_states,dim = 1) # Second, concat rows to layer.
elif "Vertical" in self.mode:
ox = torch.cat(h_states,dim = 2) # Or cols.
ox = ox.reshape(x.size()[0],x.size()[1],x.size()[2]) # Restore to 3d source.
return ox
def masksepcalc(x,contexts,mask,pn,divide):
db(self,f"in MaskSepCalc")
xs = x.size()[1]
(dsh,dsw) = split_dims(xs, height, width, self)
tll = self.pt if pn else self.nt
# Base forward.
i = 0
outb = None
if self.usebase:
context = contexts[:,tll[i][0] * TOKENSCON:tll[i][1] * TOKENSCON,:]
# SBM Controlnet sends extra conds at the end of context, apply it to all regions.
cnet_ext = contexts.shape[1] - (contexts.shape[1] // TOKENSCON) * TOKENSCON
if cnet_ext > 0:
context = torch.cat([context,contexts[:,-cnet_ext:,:]],dim = 1)
negpip = negpipdealer(i,pn)
i = i + 1
out = main_forward(module, x, context, mask, divide, self.isvanilla, isxl = self.isxl, negpip = negpip)
if len(self.nt) == 1 and not pn:
db(self,"return out for NP")
return out
# if self.usebase:
outb = out.clone()
outb = outb.reshape(outb.size()[0], dsh, dsw, outb.size()[2])
db(self,f"tokens : {tll},pn : {pn}")
ox = torch.zeros_like(x)
ox = ox.reshape(ox.shape[0], dsh, dsw, ox.shape[2])
ftrans = Resize((dsh, dsw), interpolation = InterpolationMode("nearest"))
for rmask in self.regmasks:
# Need to delay mask tensoring so it's on the correct gpu.
# Dunno if caching masks would be an improvement.
if self.usebase:
bweight = self.bratios[0][i - 1]
# Resize mask to current dims.
# Since it's a mask, we prefer a binary value, nearest is the only option.
rmask2 = ftrans(rmask.reshape([1, *rmask.shape])) # Requires dimensions N,C,{d}.
rmask2 = rmask2.reshape(1, dsh, dsw, 1)
# Grabs a set of tokens depending on number of unrelated breaks.
context = contexts[:,tll[i][0] * TOKENSCON:tll[i][1] * TOKENSCON,:]
# SBM Controlnet sends extra conds at the end of context, apply it to all regions.
cnet_ext = contexts.shape[1] - (contexts.shape[1] // TOKENSCON) * TOKENSCON
if cnet_ext > 0:
context = torch.cat([context,contexts[:,-cnet_ext:,:]],dim = 1)
db(self,f"tokens : {tll[i][0]*TOKENSCON}-{tll[i][1]*TOKENSCON}")
i = i + 1
# if i >= contexts.size()[1]:
# indlast = True
out = main_forward(module, x, context, mask, divide, self.isvanilla, isxl = self.isxl)
if len(self.nt) == 1 and not pn:
db(self,"return out for NP")
return out
out = out.reshape(out.size()[0], dsh, dsw, out.size()[2]) # convert to main shape.
if self.usebase:
out = out * (1 - bweight) + outb * bweight
ox = ox + out * rmask2
if self.usebase:
rmask = self.regbase
rmask2 = ftrans(rmask.reshape([1, *rmask.shape])) # Requires dimensions N,C,{d}.
rmask2 = rmask2.reshape(1, dsh, dsw, 1)
ox = ox + outb * rmask2
ox = ox.reshape(x.size()[0],x.size()[1],x.size()[2]) # Restore to 3d source.
return ox
def promptsepcalc(x, contexts, mask, pn,divide):
h_states = []
tll = self.pt if pn else self.nt
db(self,f"in PromptSepCalc")
db(self,f"tokens : {tll},pn : {pn}")
for i, tl in enumerate(tll):
context = contexts[:, tl[0] * TOKENSCON : tl[1] * TOKENSCON, :]
# SBM Controlnet sends extra conds at the end of context, apply it to all regions.
cnet_ext = contexts.shape[1] - (contexts.shape[1] // TOKENSCON) * TOKENSCON
if cnet_ext > 0:
context = torch.cat([context,contexts[:,-cnet_ext:,:]],dim = 1)
db(self,f"tokens3 : {tl[0]*TOKENSCON}-{tl[1]*TOKENSCON}")
db(self,f"extra-tokens : {cnet_ext}")
userpp = self.pn and i == 0 and self.pfirst
negpip = negpipdealer(self.condi,pn) if "La" in self.calc else negpipdealer(i,pn)
out = main_forward(module, x, context, mask, divide, self.isvanilla, userpp = userpp, width = dsw, height = dsh,
tokens = self.pe, step = self.step, isxl = self.isxl, negpip = negpip, inhr = self.in_hr)
if (len(self.nt) == 1 and not pn) or ("Pro" in self.mode and "La" in self.calc):
db(self,"return out for NP or Latent")
return out
db(self,[scale, dsh, dsw, dsh * dsw, x.size()[1]])
if i == 0:
outb = out.clone()
continue
else:
h_states.append(out)
if self.debug:
for h in h_states :
print(f"divided : {h.size()}")
print(pmaskshw)
if pmaskshw == []:
return outb
ox = outb.clone() if self.ex else outb * 0
db(self,[pmaskshw,maskready,(dsh,dsw) in pmaskshw and maskready,len(pmasksf),len(h_states)])
if (dsh,dsw) in pmaskshw and maskready:
depth = pmaskshw.index((dsh,dsw))
maskb = None
for masks , state in zip(pmasksf.values(),h_states):
mask = masks[depth]
masked = torch.multiply(state, mask)
if self.ex:
ox = torch.where(masked !=0 , masked, ox)
else:
ox = ox + masked
maskb = maskb + mask if maskb is not None else mask
maskb = 1 - maskb
if not self.ex : ox = ox + torch.multiply(outb, maskb)
return ox
else:
return outb
if self.eq:
db(self,"same token size and divisions")
if "Mas" in self.mode:
ox = masksepcalc(x, contexts, mask, True, 1)
elif "Pro" in self.mode:
ox = promptsepcalc(x, contexts, mask, True, 1)
else:
ox = matsepcalc(x, contexts, mask, True, 1)
elif x.size()[0] == 1 * self.batch_size:
db(self,"different tokens size")
if "Mas" in self.mode:
ox = masksepcalc(x, contexts, mask, self.pn, 1)
elif "Pro" in self.mode:
ox = promptsepcalc(x, contexts, mask, self.pn, 1)
else:
ox = matsepcalc(x, contexts, mask, self.pn, 1)
else:
db(self,"same token size and different divisions")
# SBM You get 2 layers of x, context for pos/neg.
# Each should be forwarded separately, pairing them up together.
if self.isvanilla: # SBM Ddim reverses cond/uncond.
nx, px = x.chunk(2)
conn,conp = contexts.chunk(2)
else:
px, nx = x.chunk(2)
conp,conn = contexts.chunk(2)
if "Mas" in self.mode:
opx = masksepcalc(px, conp, mask, True, 2)
onx = masksepcalc(nx, conn, mask, False, 2)
elif "Pro" in self.mode:
opx = promptsepcalc(px, conp, mask, True, 2)
onx = promptsepcalc(nx, conn, mask, False, 2)
else:
# SBM I think division may have been an incorrect patch.
# But I'm not sure, haven't tested beyond DDIM / PLMS.
opx = matsepcalc(px, conp, mask, True, 2)
onx = matsepcalc(nx, conn, mask, False, 2)
if self.isvanilla: # SBM Ddim reverses cond/uncond.
ox = torch.cat([onx, opx])
else:
ox = torch.cat([opx, onx])
self.count += 1
limit = 70 if self.isxl else 16
if self.count == limit:
self.pn = not self.pn
self.count = 0
self.pfirst = False
self.condi += 1
db(self,f"output : {ox.size()}")
return ox
return forward
def split_dims(xs, height, width, self = None):
"""Split an attention layer dimension to height + width.
Originally, the estimate was dsh = sqrt(hw_ratio*xs),
rounding to the nearest value. But this proved inaccurate.
What seems to be the actual operation is as follows:
- Divide h,w by 8, rounding DOWN.
(However, webui forces dims to be divisible by 8 unless set explicitly.)
- For every new layer (of 4), divide both by 2 and round UP (then back up)
- Multiply h*w to yield xs.
There is no inverse function to this set of operations,
so instead we mimic them sans the multiplication part with orig h+w.
The only alternative is brute forcing integer guesses,
which might be inaccurate too.
No known checkpoints follow a different system of layering,
but it's theoretically possible. Please report if encountered.
"""
# OLD METHOD.
# scale = round(math.sqrt(height*width/xs))
# dsh = round_dim(height, scale)
# dsw = round_dim(width, scale)
scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
dsh = repeat_div(height,scale)
dsw = repeat_div(width,scale)
if xs > dsh * dsw and hasattr(self,"nei_multi"):
dsh, dsw = self.nei_multi[1], self.nei_multi[0]
while dsh*dsw != xs:
dsh, dsw = dsh//2, dsw//2
if self is not None:
if self.debug : print(scale,dsh,dsw,dsh*dsw,xs, height, width)
return dsh,dsw
def repeat_div(x,y):
"""Imitates dimension halving common in convolution operations.
This is a pretty big assumption of the model,
but then if some model doesn't work like that it will be easy to spot.
"""
while y > 0:
x = math.ceil(x / 2)
y = y - 1
return x
#################################################################################
##### for Prompt mode
pmasks = {} #maked from attention maps
pmaskshw =[] #height,width set of u-net blocks
pmasksf = {} #maked from pmasks for regions
maskready = False
hiresfinished = False
def reset_pmasks(self): # init parameters in every batch
global pmasks, pmaskshw, pmasksf, maskready, hiresfinished, pmaskshw_o
self.step = 0
pmasks = {}
pmaskshw =[]
pmaskshw_o =[]
pmasksf = {}
maskready = False
hiresfinished = False
self.x = None
self.rebacked = False
def savepmasks(self,processed):
for mask ,th in zip(pmasks.values(),self.th):
img, _ , _= makepmask(mask, self.h, self.w,th, self.step)
processed.images.append(img)
return processed
def hiresscaler(new_h,new_w,attn):
global pmaskshw,pmasks,pmasksf,pmaskshw_o, hiresfinished
nset = (new_h,new_w)
(old_h, old_w) = pmaskshw[0]
if new_h > pmaskshw[0][0]:
pmaskshw_o = pmaskshw.copy()
del pmaskshw
pmaskshw = [nset]
hiresmask(pmasks,old_h, old_w, new_h, new_w,at = attn[:,:,0])
hiresmask(pmasksf,old_h, old_w, new_h, new_w,i = 0)
if nset not in pmaskshw:
index = len(pmaskshw)
pmaskshw.append(nset)
old_h, old_w = pmaskshw_o[index]
hiresmask(pmasksf,old_h, old_w, new_h, new_w,i = index)
if index == 3: hiresfinished = True
def hiresmask(masks,oh,ow,nh,nw,at = None,i = None):
for key in masks.keys():
mask = masks[key] if i is None else masks[key][i]
mask = mask.view(8 if i is None else 1,oh,ow)
mask = F.resize(mask,(nh,nw))
mask = mask.reshape_as(at) if at is not None else mask.reshape(1,mask.shape[1] * mask.shape[2],1)
if i is None:
masks[key] = mask
else:
masks[key][i] = mask
def makepmask(mask, h, w, th, step, bratio = 1): # make masks from attention cache return [for preview, for attention, for Latent]
th = th - step * 0.005
bratio = 1 - bratio
mask = torch.mean(mask,dim=0)
mask = mask / mask.max().item()
mask = torch.where(mask > th ,1,0)
mask = mask.float()
mask = mask.view(1,pmaskshw[0][0],pmaskshw[0][1])
img = torchvision.transforms.functional.to_pil_image(mask)
img = img.resize((w,h))
mask = F.resize(mask,(h,w),interpolation=F.InterpolationMode.NEAREST)
lmask = mask
mask = mask.reshape(h*w)
mask = torch.where(mask > 0.1 ,1,0)
return img,mask * bratio , lmask * bratio
def makerrandman(mask, h, w, latent = False): # make masks from attention cache return [for preview, for attention, for Latent]
mask = mask.float()
mask = mask.view(1,mask.shape[0],mask.shape[1])
img = torchvision.transforms.functional.to_pil_image(mask)
img = img.resize((w,h))
mask = F.resize(mask,(h,w),interpolation=F.InterpolationMode.NEAREST)
if latent: return mask
mask = mask.reshape(h*w)
mask = torch.round(mask).long()
return mask
def negpipdealer(i,pn):
negpip = None
from modules.scripts import scripts_txt2img
for script in scripts_txt2img.alwayson_scripts:
if "negpip.py" in script.filename:
negpip = script
if negpip:
conds = negpip.conds if pn else negpip.unconds
tokens = negpip.contokens if pn else negpip.untokens
if conds and len(conds) >= i + 1:
if conds[i] is not None:
return [conds[i],tokens[i]]
else:
return None
else:
return None