File size: 7,219 Bytes
983d4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os, glob
from collections import Counter
from PIL import Image
from math import isqrt, ceil
from typing import List
import logging
import hashlib
import torch
from safetensors.torch import save_file, safe_open
from insightface.app.common import Face

from modules.images import FilenameGenerator, get_next_sequence_number
from modules import shared, script_callbacks
from scripts.reactor_globals import DEVICE, BASE_PATH, FACE_MODELS_PATH, IS_SDNEXT

try:
    from modules.paths_internal import models_path
except:
    try:
        from modules.paths import models_path
    except:
        model_path = os.path.abspath("models")

MODELS_PATH = None

def set_Device(value):
    global DEVICE
    DEVICE = value
    with open(os.path.join(BASE_PATH, "last_device.txt"), "w") as txt:
        txt.write(DEVICE)

def get_Device():
    global DEVICE
    return DEVICE

def set_SDNEXT():
    global IS_SDNEXT
    IS_SDNEXT = True

def get_SDNEXT():
    global IS_SDNEXT
    return IS_SDNEXT

def make_grid(image_list: List):
    
    # Count the occurrences of each image size in the image_list
    size_counter = Counter(image.size for image in image_list)
    
    # Get the most common image size (size with the highest count)
    common_size = size_counter.most_common(1)[0][0]
    
    # Filter the image_list to include only images with the common size
    image_list = [image for image in image_list if image.size == common_size]
    
    # Get the dimensions (width and height) of the common size
    size = common_size
    
    # If there are more than one image in the image_list
    if len(image_list) > 1:
        num_images = len(image_list)
        
        # Calculate the number of rows and columns for the grid
        rows = isqrt(num_images)
        cols = ceil(num_images / rows)

        # Calculate the size of the square image
        square_size = (cols * size[0], rows * size[1])

        # Create a new RGB image with the square size
        square_image = Image.new("RGB", square_size)

        # Paste each image onto the square image at the appropriate position
        for i, image in enumerate(image_list):
            row = i // cols
            col = i % cols

            square_image.paste(image, (col * size[0], row * size[1]))

        # Return the resulting square image
        return square_image
    
    # Return None if there are no images or only one image in the image_list
    return None

def get_image_path(image, path, basename, seed=None, prompt=None, extension='png', p=None, suffix=""):
    
    namegen = FilenameGenerator(p, seed, prompt, image)

    save_to_dirs = shared.opts.save_to_dirs

    if save_to_dirs:
        dirname = namegen.apply(shared.opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
        path = os.path.join(path, dirname)

    os.makedirs(path, exist_ok=True)

    if seed is None:
        file_decoration = ""
    elif shared.opts.save_to_dirs:
        file_decoration = shared.opts.samples_filename_pattern or "[seed]"
    else:
        file_decoration = shared.opts.samples_filename_pattern or "[seed]-[prompt_spaces]"

    file_decoration = namegen.apply(file_decoration) + suffix

    add_number = shared.opts.save_images_add_number or file_decoration == ''

    if file_decoration != "" and add_number:
        file_decoration = f"-{file_decoration}"

    if add_number:
        basecount = get_next_sequence_number(path, basename)
        fullfn = None
        for i in range(500):
            fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
            fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
            if not os.path.exists(fullfn):
                break
    else:
        fullfn = os.path.join(path, f"{file_decoration}.{extension}")

    pnginfo = {}

    params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
    # script_callbacks.before_image_saved_callback(params)

    fullfn = params.filename

    fullfn_without_extension, extension = os.path.splitext(params.filename)
    if hasattr(os, 'statvfs'):
        max_name_len = os.statvfs(path).f_namemax
        fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
        params.filename = fullfn_without_extension + extension
        fullfn = params.filename

    return fullfn

def addLoggingLevel(levelName, levelNum, methodName=None):
    if not methodName:
        methodName = levelName.lower()

    def logForLevel(self, message, *args, **kwargs):
        if self.isEnabledFor(levelNum):
            self._log(levelNum, message, args, **kwargs)

    def logToRoot(message, *args, **kwargs):
        logging.log(levelNum, message, *args, **kwargs)

    logging.addLevelName(levelNum, levelName)
    setattr(logging, levelName, levelNum)
    setattr(logging.getLoggerClass(), methodName, logForLevel)
    setattr(logging, methodName, logToRoot)

def get_image_md5hash(image: Image.Image):
    md5hash = hashlib.md5(image.tobytes())
    return md5hash.hexdigest()

def save_face_model(face: Face, filename: str) -> None:
    try:
        tensors = {
            "bbox": torch.tensor(face["bbox"]),
            "kps": torch.tensor(face["kps"]),
            "det_score": torch.tensor(face["det_score"]),
            "landmark_3d_68": torch.tensor(face["landmark_3d_68"]),
            "pose": torch.tensor(face["pose"]),
            "landmark_2d_106": torch.tensor(face["landmark_2d_106"]),
            "embedding": torch.tensor(face["embedding"]),
            "gender": torch.tensor(face["gender"]),
            "age": torch.tensor(face["age"]),
        }
        save_file(tensors, filename)
        # print(f"Face model has been saved to '{filename}'")
    except Exception as e:
        print(f"Error: {e}")

def get_models():
    global MODELS_PATH
    models_path_init = os.path.join(models_path, "insightface/*")
    models = glob.glob(models_path_init)
    models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
    models_names = []
    for model in models:
        model_path = os.path.split(model)
        if MODELS_PATH is None:
            MODELS_PATH = model_path[0]
        model_name = model_path[1]
        models_names.append(model_name)
    return models_names

def load_face_model(filename: str):
    face = {}
    model_path = os.path.join(FACE_MODELS_PATH, filename)
    with safe_open(model_path, framework="pt") as f:
        for k in f.keys():
            face[k] = f.get_tensor(k).numpy()
    return Face(face)

def get_facemodels():
    models_path = os.path.join(FACE_MODELS_PATH, "*")
    models = glob.glob(models_path)
    models = [x for x in models if x.endswith(".safetensors")]
    return models

def get_model_names(get_models):
    models = get_models()
    names = ["None"]
    for x in models:
        names.append(os.path.basename(x))
    return names

def get_images_from_folder(path: str):
    images_path = os.path.join(path, "*")
    images = glob.glob(images_path)
    return [Image.open(x) for x in images if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp'))]

def get_images_from_list(imgs: List):
    return [Image.open(os.path.abspath(x.name)) for x in imgs]