File size: 5,368 Bytes
983d4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
'''
Thanks SpenserCai for the original version of the roop api script
-----------------------------------
--- ReActor External API v1.0.1 ---
-----------------------------------
'''
import os, glob
from datetime import datetime, date
from fastapi import FastAPI, Body

# from modules.api.models import *
from modules import scripts, shared
from modules.api import api

import gradio as gr

from scripts.reactor_swapper import EnhancementOptions, swap_face
from scripts.reactor_logger import logger


def default_file_path():
    time = datetime.now()
    today = date.today()
    current_date = today.strftime('%Y-%m-%d')
    current_time = time.strftime('%H-%M-%S')
    output_file = 'output_'+current_date+'_'+current_time+'.png'
    return os.path.join(os.path.abspath("outputs/api"), output_file)

def get_face_restorer(name):
    for restorer in shared.face_restorers:
        if restorer.name() == name:
            return restorer
    return None

def get_upscaler(name):
    for upscaler in shared.sd_upscalers:
        if upscaler.name == name:
            return upscaler
    return None

def get_models():
    models_path = os.path.join(scripts.basedir(), "models/insightface/*")
    models = glob.glob(models_path)
    models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
    return models

def get_full_model(model_name):
    models = get_models()
    for model in models:
        model_path = os.path.split(model)
        if model_path[1] == model_name:
            return model
    return None

def reactor_api(_: gr.Blocks, app: FastAPI):
    @app.post("/reactor/image")
    async def reactor_image(
        source_image: str = Body("",title="Source Face Image"),
        target_image: str = Body("",title="Target Image"),
        source_faces_index: list[int] = Body([0],title="Comma separated face number(s) from swap-source image"),
        face_index: list[int] = Body([0],title="Comma separated face number(s) for target image (result)"),
        upscaler: str = Body("None",title="Upscaler"),
        scale: float = Body(1,title="Scale by"),
        upscale_visibility: float = Body(1,title="Upscaler visibility (if scale = 1)"),
        face_restorer: str = Body("None",title="Restore Face: 0 - None; 1 - CodeFormer; 2 - GFPGA"),
        restorer_visibility: float = Body(1,title="Restore visibility value"),
        codeformer_weight: float = Body(0.5,title="CodeFormer Weight"),
        restore_first: int = Body(1,title="Restore face -> Then upscale, 1 - True, 0 - False"),
        model: str = Body("inswapper_128.onnx",title="Model"),
        gender_source: int = Body(0,title="Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)"),
        gender_target: int = Body(0,title="Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)"),
        save_to_file: int = Body(0,title="Save Result to file, 0 - No, 1 - Yes"),
        result_file_path: str = Body("",title="(if 'save_to_file = 1') Result file path"),
        device: str = Body("CPU",title="CPU or CUDA (if you have it)"),
        mask_face: int = Body(0,title="Face Mask Correction, 1 - True, 0 - False"),
        select_source: int = Body(0,title="Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder"),
        face_model: str = Body("None",title="Filename of the face model (from 'models/reactor/faces'), e.g. elena.safetensors"),
        source_folder: str = Body("",title="The path to the folder containing source faces images")
    ):
        s_image = api.decode_base64_to_image(source_image)
        t_image = api.decode_base64_to_image(target_image)
        sf_index = source_faces_index
        f_index = face_index
        gender_s = gender_source
        gender_t = gender_target
        restore_first_bool = True if restore_first == 1 else False
        mask_face = True if mask_face == 1 else False
        up_options = EnhancementOptions(do_restore_first=restore_first_bool, scale=scale, upscaler=get_upscaler(upscaler), upscale_visibility=upscale_visibility,face_restorer=get_face_restorer(face_restorer),restorer_visibility=restorer_visibility,codeformer_weight=codeformer_weight)
        use_model = get_full_model(model)
        if use_model is None:
            Exception("Model not found")
        result = swap_face(s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model, source_folder, None)
        if save_to_file == 1:
            if result_file_path == "":
                result_file_path = default_file_path()
            try:
                result[0].save(result_file_path, format='PNG')
                logger.status("Result has been saved to: %s", result_file_path)
            except Exception as e:
                logger.error("Error while saving result: %s",e)
        return {"image": api.encode_pil_to_base64(result[0])}

    @app.get("/reactor/models")
    async def reactor_models():
        model_names = [os.path.split(model)[1] for model in get_models()]
        return {"models": model_names}
    
    @app.get("/reactor/upscalers")
    async def reactor_upscalers():
        names = [upscaler.name for upscaler in shared.sd_upscalers]
        return {"upscalers": names}

try:
    import modules.script_callbacks as script_callbacks

    script_callbacks.on_app_started(reactor_api)
except:
    pass