File size: 15,722 Bytes
a9658c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from pathlib import Path
from types import MethodType

import os
import cv2
import numpy as np
import torch
import hashlib
from PIL import Image, ImageOps, UnidentifiedImageError
from modules import processing, shared, scripts, img2img, devices, masking, sd_samplers, images
from modules.processing import (StableDiffusionProcessingImg2Img,
                                process_images,
                                create_binary_mask,
                                create_random_tensors,
                                images_tensor_to_samples,
                                setup_color_correction,
                                opt_f)
from modules.shared import opts
from modules.sd_samplers_common import images_tensor_to_samples, approximation_indexes

from scripts.animatediff_logger import logger_animatediff as logger


class AnimateDiffI2IBatch:
    original_img2img_process_batch = None

    def hack(self):
        # TODO: PR this hack to A1111
        if AnimateDiffI2IBatch.original_img2img_process_batch is not None:
            logger.info("Hacking i2i-batch is already done.")
            return

        logger.info("Hacking i2i-batch.")
        AnimateDiffI2IBatch.original_img2img_process_batch = img2img.process_batch
        original_img2img_process_batch = AnimateDiffI2IBatch.original_img2img_process_batch

        def hacked_i2i_init(self, all_prompts, all_seeds, all_subseeds): # only hack this when i2i-batch with batch mask
            self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None

            self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
            crop_regions = []
            paste_to = []
            masks_for_overlay = []

            image_masks = self.image_mask

            for idx, image_mask in enumerate(image_masks):
                # image_mask is passed in as RGBA by Gradio to support alpha masks,
                # but we still want to support binary masks.
                image_mask = create_binary_mask(image_mask)

                if self.inpainting_mask_invert:
                    image_mask = ImageOps.invert(image_mask)

                if self.mask_blur_x > 0:
                    np_mask = np.array(image_mask)
                    kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
                    np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
                    image_mask = Image.fromarray(np_mask)

                if self.mask_blur_y > 0:
                    np_mask = np.array(image_mask)
                    kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
                    np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
                    image_mask = Image.fromarray(np_mask)

                if self.inpaint_full_res:
                    masks_for_overlay.append(image_mask)
                    mask = image_mask.convert('L')
                    crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
                    crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
                    crop_regions.append(crop_region)
                    x1, y1, x2, y2 = crop_region

                    mask = mask.crop(crop_region)
                    image_mask = images.resize_image(2, mask, self.width, self.height)
                    paste_to.append((x1, y1, x2-x1, y2-y1))
                else:
                    image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
                    np_mask = np.array(image_mask)
                    np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
                    masks_for_overlay.append(Image.fromarray(np_mask))

                image_masks[idx] = image_mask

            self.mask_for_overlay = masks_for_overlay[0] # only for saving purpose
            if paste_to:
                self.paste_to = paste_to[0]
                self._animatediff_paste_to_full = paste_to

            self.overlay_images = []
            add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
            if add_color_corrections:
                self.color_corrections = []
            imgs = []
            for idx, img in enumerate(self.init_images):
                latent_mask = (self.latent_mask[idx] if isinstance(self.latent_mask, list) else self.latent_mask) if self.latent_mask is not None else image_masks[idx]
                # Save init image
                if opts.save_init_img:
                    self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
                    images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)

                image = images.flatten(img, opts.img2img_background_color)

                if not crop_regions and self.resize_mode != 3:
                    image = images.resize_image(self.resize_mode, image, self.width, self.height)

                if image_masks:
                    image_masked = Image.new('RGBa', (image.width, image.height))
                    image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(masks_for_overlay[idx].convert('L')))

                    self.overlay_images.append(image_masked.convert('RGBA'))

                # crop_region is not None if we are doing inpaint full res
                if crop_regions:
                    image = image.crop(crop_regions[idx])
                    image = images.resize_image(2, image, self.width, self.height)

                if image_masks:
                    if self.inpainting_fill != 1:
                        image = masking.fill(image, latent_mask)

                if add_color_corrections:
                    self.color_corrections.append(setup_color_correction(image))

                image = np.array(image).astype(np.float32) / 255.0
                image = np.moveaxis(image, 2, 0)

                imgs.append(image)

            if len(imgs) == 1:
                batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
                if self.overlay_images is not None:
                    self.overlay_images = self.overlay_images * self.batch_size

                if self.color_corrections is not None and len(self.color_corrections) == 1:
                    self.color_corrections = self.color_corrections * self.batch_size

            elif len(imgs) <= self.batch_size:
                self.batch_size = len(imgs)
                batch_images = np.array(imgs)
            else:
                raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")

            image = torch.from_numpy(batch_images)
            image = image.to(shared.device, dtype=devices.dtype_vae)

            if opts.sd_vae_encode_method != 'Full':
                self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method

            self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
            devices.torch_gc()

            if self.resize_mode == 3:
                self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")

            if image_masks is not None:
                def process_letmask(init_mask):
                    # init_mask = latent_mask
                    latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
                    latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
                    latmask = latmask[0]
                    latmask = np.around(latmask)
                    return np.tile(latmask[None], (4, 1, 1))

                if self.latent_mask is not None and not isinstance(self.latent_mask, list):
                    latmask = process_letmask(self.latent_mask)
                else:
                    if isinstance(self.latent_mask, list):
                        latmask = [process_letmask(x) for x in self.latent_mask]
                    else:
                        latmask = [process_letmask(x) for x in image_masks]
                    latmask = np.stack(latmask, axis=0)

                self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
                self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)

                # this needs to be fixed to be done in sample() using actual seeds for batches
                if self.inpainting_fill == 2:
                    self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
                elif self.inpainting_fill == 3:
                    self.init_latent = self.init_latent * self.mask

            self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_masks) # let's ignore this image_masks which is related to inpaint model with different arch

        def hacked_img2img_process_batch_hijack(
                p: StableDiffusionProcessingImg2Img, input_dir: str, output_dir: str, inpaint_mask_dir: str,
                args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
            if p.scripts:
                for script in p.scripts.alwayson_scripts:
                    if script.title().lower() == "animatediff":
                        ad_arg = p.script_args[script.args_from]
                        ad_enabled = ad_arg.get('enable', False) if isinstance(ad_arg, dict) else getattr(ad_arg, 'enable', False)
                        if ad_enabled:
                            p._animatediff_i2i_batch = 1 # i2i-batch mode, ordinary

            if not hasattr(p, '_animatediff_i2i_batch'):
                return original_img2img_process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale, scale_by, use_png_info, png_info_props, png_info_dir)
            output_dir = output_dir.strip()
            processing.fix_seed(p)

            images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))

            is_inpaint_batch = False
            if inpaint_mask_dir:
                inpaint_masks = shared.listfiles(inpaint_mask_dir)
                is_inpaint_batch = bool(inpaint_masks)

                if is_inpaint_batch:
                    assert len(inpaint_masks) == 1 or len(inpaint_masks) == len(images), 'The number of masks must be 1 or equal to the number of images.'
                    logger.info(f"\n[i2i batch] Inpaint batch is enabled. {len(inpaint_masks)} masks found.")
                    if len(inpaint_masks) > 1: # batch mask
                        p.init = MethodType(hacked_i2i_init, p)

            logger.info(f"[i2i batch] Will process {len(images)} images, creating {p.n_iter} new videos.")

            # extract "default" params to use in case getting png info fails
            prompt = p.prompt
            negative_prompt = p.negative_prompt
            seed = p.seed
            cfg_scale = p.cfg_scale
            sampler_name = p.sampler_name
            steps = p.steps
            frame_images = []
            frame_masks = []

            for i, image in enumerate(images):

                try:
                    img = Image.open(image)
                except UnidentifiedImageError as e:
                    print(e)
                    continue
                # Use the EXIF orientation of photos taken by smartphones.
                img = ImageOps.exif_transpose(img)

                if to_scale:
                    p.width = int(img.width * scale_by)
                    p.height = int(img.height * scale_by)

                frame_images.append(img)

                image_path = Path(image)
                if is_inpaint_batch:
                    if len(inpaint_masks) == 1:
                        mask_image_path = inpaint_masks[0]
                        p.image_mask = Image.open(mask_image_path)
                    else:
                        # try to find corresponding mask for an image using index matching
                        mask_image_path = inpaint_masks[i]
                        frame_masks.append(Image.open(mask_image_path))

                    mask_image = Image.open(mask_image_path)
                    p.image_mask = mask_image

            if use_png_info:
                try:
                    info_img = frame_images[0]
                    if png_info_dir:
                        info_img_path = os.path.join(png_info_dir, os.path.basename(image))
                        info_img = Image.open(info_img_path)
                    from modules import images as imgutil
                    from modules.generation_parameters_copypaste import parse_generation_parameters
                    geninfo, _ = imgutil.read_info_from_image(info_img)
                    parsed_parameters = parse_generation_parameters(geninfo)
                    parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
                except Exception:
                    parsed_parameters = {}

                p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "")
                p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "")
                p.seed = int(parsed_parameters.get("Seed", seed))
                p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale))
                p.sampler_name = parsed_parameters.get("Sampler", sampler_name)
                p.steps = int(parsed_parameters.get("Steps", steps))
            
            p.init_images = frame_images
            if len(frame_masks) > 0:
                p.image_mask = frame_masks

            proc = scripts.scripts_img2img.run(p, *args) # we should not support this, but just leave it here
            if proc is None:
                if output_dir:
                    p.outpath_samples = output_dir
                    p.override_settings['save_to_dirs'] = False
                    if p.n_iter > 1 or p.batch_size > 1:
                        p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
                    else:
                        p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
                return process_images(p)
            else:
                logger.warn("Warning: you are using an unsupported external script. AnimateDiff may not work properly.")

        img2img.process_batch = hacked_img2img_process_batch_hijack


    def cap_init_image(self, p: StableDiffusionProcessingImg2Img, params):
        if params.enable and isinstance(p, StableDiffusionProcessingImg2Img) and hasattr(p, '_animatediff_i2i_batch'):
            if len(p.init_images) > params.video_length:
                p.init_images = p.init_images[:params.video_length]
                if p.image_mask and isinstance(p.image_mask, list) and len(p.image_mask) > params.video_length:
                    p.image_mask = p.image_mask[:params.video_length]
            if len(p.init_images) < params.video_length:
                params.video_length = len(p.init_images)
            if len(p.init_images) < params.batch_size:
                params.batch_size = len(p.init_images)


animatediff_i2ibatch = AnimateDiffI2IBatch()