|
import os |
|
import sys |
|
import json |
|
import pandas as pd |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import rdkit |
|
from rdkit import Chem |
|
from rdkit.Chem import AllChem |
|
|
|
sys.path.append("../../") |
|
from utils.compound_tools import mol_to_geognn_graph_data_MMFF3d |
|
|
|
|
|
def GetIRMetaFile(): |
|
|
|
|
|
raw_smiles_all, raw_index_all = [], [] |
|
max_len = -1 |
|
ir_filelist = os.listdir("./qm9_ir_spec/") |
|
for filename in tqdm(ir_filelist[:max_len]): |
|
mol_info = json.load(open(os.path.join("./qm9_ir_spec/", filename), "r")) |
|
raw_smiles_all.append(mol_info['smiles']) |
|
raw_index_all.append(filename.split('.')[0]) |
|
|
|
dataset_all, smiles_all, index_all = [], [], [] |
|
|
|
for i in tqdm(range(len(raw_smiles_all))): |
|
mol = AllChem.MolFromSmiles(raw_smiles_all[i]) |
|
mol = Chem.AddHs(mol) |
|
AllChem.EmbedMolecule(mol) |
|
try: |
|
data = mol_to_geognn_graph_data_MMFF3d(mol) |
|
dataset_all.append(data); smiles_all.append(raw_smiles_all[i]) |
|
index_all.append(raw_index_all[i]) |
|
except ValueError: |
|
print("error in {}".format(i)) |
|
|
|
result_dict = dict( |
|
smiles_all=smiles_all, index_all=index_all, |
|
dataset_all=dataset_all, |
|
) |
|
np.save(f"ir_column_charity_all.npy", result_dict) |
|
|
|
if __name__ == "__main__": |
|
GetIRMetaFile() |