Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
lhoestq HF Staff commited on
Commit
c518139
·
verified ·
1 Parent(s): db3f656

Delete loading script

Browse files
Files changed (1) hide show
  1. big_patent.py +0 -163
big_patent.py DELETED
@@ -1,163 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """BigPatent Dataset."""
18
- import gzip
19
- import json
20
- import os
21
-
22
- import datasets
23
-
24
-
25
- _HOMEPAGE = "https://evasharma.github.io/bigpatent/"
26
-
27
- _CITATION = """
28
- @misc{sharma2019bigpatent,
29
- title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
30
- author={Eva Sharma and Chen Li and Lu Wang},
31
- year={2019},
32
- eprint={1906.03741},
33
- archivePrefix={arXiv},
34
- primaryClass={cs.CL}
35
- }
36
- """
37
-
38
- _DESCRIPTION = """
39
- BIGPATENT, consisting of 1.3 million records of U.S. patent documents
40
- along with human written abstractive summaries.
41
- Each US patent application is filed under a Cooperative Patent Classification
42
- (CPC) code. There are nine such classification categories:
43
- A (Human Necessities), B (Performing Operations; Transporting),
44
- C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),
45
- F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),
46
- G (Physics), H (Electricity), and
47
- Y (General tagging of new or cross-sectional technology)
48
- There are two features:
49
- - description: detailed description of patent.
50
- - abstract: Patent abastract.
51
- """
52
-
53
- _LICENSE = "Creative Commons Attribution 4.0 International"
54
-
55
- _SPLIT_NAMES = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "val", datasets.Split.TEST: "test"}
56
- _URL = "data/{version}/{split_name}.zip"
57
-
58
- _DOCUMENT = "description"
59
- _SUMMARY = "abstract"
60
-
61
- _CPC_DESCRIPTION = {
62
- "a": "Human Necessities",
63
- "b": "Performing Operations; Transporting",
64
- "c": "Chemistry; Metallurgy",
65
- "d": "Textiles; Paper",
66
- "e": "Fixed Constructions",
67
- "f": "Mechanical Engineering; Lightning; Heating; Weapons; Blasting",
68
- "g": "Physics",
69
- "h": "Electricity",
70
- "y": "General tagging of new or cross-sectional technology",
71
- }
72
-
73
- # Available versions:
74
- # 1.0.0 lower cased tokenized words.
75
- # 2.0.0 cased raw strings.
76
- # 2.1.2 cased raw strings (fixed).
77
-
78
- _VERSION = "2.1.2"
79
-
80
-
81
- class BigPatentConfig(datasets.BuilderConfig):
82
- """BuilderConfig for BigPatent."""
83
-
84
- def __init__(self, codes="all", version=_VERSION, **kwargs):
85
- """BuilderConfig for BigPatent.
86
- Args:
87
- codes (str or list, default 'all'): CPC codes. Either 'all' or a combination
88
- of {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'y'}.
89
- **kwargs: keyword arguments forwarded to super.
90
- """
91
- if isinstance(codes, str):
92
- codes = [codes]
93
- name = "+".join(codes)
94
- if name == "all":
95
- codes = list(_CPC_DESCRIPTION)
96
- if version != _VERSION:
97
- name = f"{name}-{version}"
98
- super().__init__(name=name, version=version, **kwargs)
99
- self.codes = codes
100
-
101
-
102
- class BigPatent(datasets.GeneratorBasedBuilder):
103
- """BigPatent datasets."""
104
-
105
- BUILDER_CONFIG_CLASS = BigPatentConfig
106
- BUILDER_CONFIGS = [
107
- BigPatentConfig(
108
- codes="all",
109
- description="Patents under all categories.",
110
- ),
111
- ] + [
112
- BigPatentConfig(
113
- codes=k,
114
- description=f"Patents under Cooperative Patent Classification (CPC) {k}: {v}",
115
- )
116
- for k, v in sorted(_CPC_DESCRIPTION.items())
117
- ]
118
- DEFAULT_CONFIG_NAME = "all"
119
- VERSION = _VERSION
120
-
121
- def _info(self):
122
- return datasets.DatasetInfo(
123
- description=_DESCRIPTION,
124
- features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
125
- supervised_keys=(_DOCUMENT, _SUMMARY),
126
- homepage=_HOMEPAGE,
127
- license=_LICENSE,
128
- citation=_CITATION,
129
- )
130
-
131
- def _split_generators(self, dl_manager):
132
- """Returns SplitGenerators."""
133
- urls = {
134
- split: _URL.format(version=self.config.version, split_name=split_name)
135
- for split, split_name in _SPLIT_NAMES.items()
136
- }
137
- dl_paths = dl_manager.download_and_extract(urls)
138
- paths = {
139
- split: [
140
- dl_manager.iter_files(os.path.join(dl_paths[split], split_name, code)) for code in self.config.codes
141
- ]
142
- for split, split_name in _SPLIT_NAMES.items()
143
- }
144
- return [
145
- datasets.SplitGenerator(
146
- name=split,
147
- gen_kwargs={"paths": paths[split]},
148
- )
149
- for split in _SPLIT_NAMES
150
- ]
151
-
152
- def _generate_examples(self, paths=None):
153
- """Yields examples."""
154
- for paths_per_code in paths:
155
- for path in paths_per_code:
156
- with open(path, "rb") as fin:
157
- fin = gzip.GzipFile(fileobj=fin)
158
- for row in fin:
159
- json_obj = json.loads(row)
160
- yield json_obj["publication_number"], {
161
- _DOCUMENT: json_obj[_DOCUMENT],
162
- _SUMMARY: json_obj[_SUMMARY],
163
- }