Enhance dataset card: update metadata and add sample usage (#1)
Browse files- Enhance dataset card: update metadata and add sample usage (a66ba9eca29c987e4263b1f5c2537a50462e4d88)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,18 +1,28 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-nc-sa-4.0
|
| 3 |
-
task_categories:
|
| 4 |
-
- question-answering
|
| 5 |
language:
|
| 6 |
- zh
|
| 7 |
- en
|
| 8 |
-
|
| 9 |
-
- agent
|
| 10 |
size_categories:
|
| 11 |
- n<1K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# Dataset Card for **GitTaskBench**
|
| 15 |
|
|
|
|
|
|
|
| 16 |
## Dataset Details
|
| 17 |
|
| 18 |
### Dataset Description
|
|
@@ -23,7 +33,7 @@ It contains **54 representative tasks** across **7 domains**, carefully curated
|
|
| 23 |
- **Funded by [optional]:** Not specified
|
| 24 |
- **Shared by [optional]:** GitTaskBench Team
|
| 25 |
- **Language(s):** Primarily English (task descriptions, documentation)
|
| 26 |
-
- **License:**
|
| 27 |
|
| 28 |
### Dataset Sources
|
| 29 |
- **Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
|
|
@@ -67,8 +77,63 @@ Each task specifies:
|
|
| 67 |
|
| 68 |
## Usage Example
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
Each task entry contains:
|
| 74 |
- **task_id**: Unique task identifier (e.g., `Trafilatura_01`)
|
|
@@ -145,4 +210,4 @@ If you use GitTaskBench, please cite the paper:
|
|
| 145 |
- Multi-modal tasks (vision, speech, text, signals).
|
| 146 |
- Repository-level evaluation.
|
| 147 |
- Real-world relevance (PDF extraction, video coloring, speech analysis, etc.).
|
| 148 |
-
- Extensible design for new tasks.
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
language:
|
| 3 |
- zh
|
| 4 |
- en
|
| 5 |
+
license: cc-by-nc-sa-4.0
|
|
|
|
| 6 |
size_categories:
|
| 7 |
- n<1K
|
| 8 |
+
task_categories:
|
| 9 |
+
- text-generation
|
| 10 |
+
- image-to-image
|
| 11 |
+
- image-to-video
|
| 12 |
+
- automatic-speech-recognition
|
| 13 |
+
- text-retrieval
|
| 14 |
+
tags:
|
| 15 |
+
- agent
|
| 16 |
+
- benchmark
|
| 17 |
+
- code-agent
|
| 18 |
+
- software-engineering
|
| 19 |
+
- multimodal
|
| 20 |
---
|
| 21 |
|
| 22 |
# Dataset Card for **GitTaskBench**
|
| 23 |
|
| 24 |
+
The dataset was presented in the paper [GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging](https://huggingface.co/papers/2508.18993).
|
| 25 |
+
|
| 26 |
## Dataset Details
|
| 27 |
|
| 28 |
### Dataset Description
|
|
|
|
| 33 |
- **Funded by [optional]:** Not specified
|
| 34 |
- **Shared by [optional]:** GitTaskBench Team
|
| 35 |
- **Language(s):** Primarily English (task descriptions, documentation)
|
| 36 |
+
- **License:** `cc-by-nc-sa-4.0`
|
| 37 |
|
| 38 |
### Dataset Sources
|
| 39 |
- **Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
|
|
|
|
| 77 |
|
| 78 |
## Usage Example
|
| 79 |
|
| 80 |
+
To get started with GitTaskBench, follow these steps for environment setup and evaluation.
|
| 81 |
+
|
| 82 |
+
### 1. Set Up ⚙️
|
| 83 |
+
First, create a new conda environment:
|
| 84 |
+
```console
|
| 85 |
+
conda create -n gittaskbench python=3.10 -y
|
| 86 |
+
conda activate gittaskbench
|
| 87 |
+
|
| 88 |
+
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 \
|
| 89 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
Then, you can install `gittaskbench` with pip:
|
| 93 |
+
```console
|
| 94 |
+
git clone https://github.com/QuantaAlpha/GitTaskBench.git
|
| 95 |
+
cd GitTaskBench
|
| 96 |
+
# config
|
| 97 |
+
pip install -e .
|
| 98 |
+
```
|
| 99 |
+
Alternatively:
|
| 100 |
+
```console
|
| 101 |
+
# config
|
| 102 |
+
pip install -r requirements.txt
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
### 2. Quick Start 💡
|
| 106 |
+
|
| 107 |
+
* #### **Single Task Evaluation:**
|
| 108 |
+
|
| 109 |
+
If you need to evaluate a single, specific task, you can use the following command. The example below shows how to evaluate the `Trafilatura_01` task:
|
| 110 |
+
|
| 111 |
+
```console
|
| 112 |
+
cd GitTaskBench
|
| 113 |
+
# The outputs are saved in the DEFAULT "./output" directory, for example: "./output/Trafilatura_01/output.txt"
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
```console
|
| 117 |
+
gittaskbench grade --taskid Trafilatura_01
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
Running the command will produce an analysis report (.jsonl) at the DEFAULT path (./test_results/Trafilatura_01). See ```test_results_for_show/``` for a sample.
|
| 121 |
|
| 122 |
+
The complete commands can be found in the [🤖 Automation Evaluation](#automation-evaluation) section.
|
| 123 |
+
|
| 124 |
+
* #### **All Tasks Evaluation**
|
| 125 |
+
When you need to evaluate all tasks, you can use the --all parameter. This command will automatically iterate through and execute the evaluation of all tasks:
|
| 126 |
+
```console
|
| 127 |
+
gittaskbench grade --all
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
* #### **Test Results Analysis**
|
| 131 |
+
After completing the evaluation, if you want to analyze & summary the test results, you can use the statistics command. This command will analyze & summary the evaluation results in the specified directory and output an analysis report (.txt):
|
| 132 |
+
|
| 133 |
+
```console
|
| 134 |
+
gittaskbench eval
|
| 135 |
+
```
|
| 136 |
+
See ```test_reports/``` for a sample.
|
| 137 |
|
| 138 |
Each task entry contains:
|
| 139 |
- **task_id**: Unique task identifier (e.g., `Trafilatura_01`)
|
|
|
|
| 210 |
- Multi-modal tasks (vision, speech, text, signals).
|
| 211 |
- Repository-level evaluation.
|
| 212 |
- Real-world relevance (PDF extraction, video coloring, speech analysis, etc.).
|
| 213 |
+
- Extensible design for new tasks.
|