Datasets:

Languages:
English
ArXiv:
License:
norec_agg / norec_agg.py
system's picture
system HF staff
import from S3
84c1e6a
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Aggregated NoRec_fine: A Fine-grained Sentiment Dataset for Norwegian"""
import csv
import datasets
_CITATION = """
@InProceedings{OvrMaeBar20,
author = {Lilja {\O}vrelid and Petter M{\ae}hlum and Jeremy Barnes and Erik Velldal},
title = {A Fine-grained Sentiment Dataset for {N}orwegian},
booktitle = {{Proceedings of the 12th Edition of the Language Resources and Evaluation Conference}},
year = 2020,
address = "Marseille, France, 2020"
}
"""
_DESCRIPTION = """\
Aggregated NoRec_fine: A Fine-grained Sentiment Dataset for Norwegian
This dataset was created by the Nordic Language Processing Laboratory by
aggregating the fine-grained annotations in NoReC_fine and removing sentences
with conflicting or no sentiment.
"""
_HOMEPAGE = "https://github.com/ltgoslo/NorBERT/"
_BASE_URL = "https://raw.githubusercontent.com/ltgoslo/NorBERT/main/benchmarking/data/sentiment/no"
_URLS = {
"train": f"{_BASE_URL}/train.csv",
"dev": f"{_BASE_URL}/dev.csv",
"test": f"{_BASE_URL}/test.csv",
}
class NorecAgg(datasets.GeneratorBasedBuilder):
"""Aggregated NoRec_fine: A Fine-grained Sentiment Dataset for Norwegian"""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["negative", "positive"]),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
for idx, row in enumerate(csv_reader):
label, text = row
label = int(label)
yield int(idx), {"text": text, "label": label}