Datasets:
File size: 1,541 Bytes
b3ddbe2 e831b8a 1987fa7 4bb171f 32843dd 1987fa7 4bb171f 1987fa7 4bb171f 32843dd b3ddbe2 4bb171f 32843dd b3ddbe2 32843dd 4bb171f b3ddbe2 4bb171f 32843dd 4bb171f 0719213 4bb171f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from datasets import DatasetBuilder, DatasetInfo, SplitGenerator
from datasets.features import Features, Value
import json
class MyDataset(DatasetBuilder):
VERSION = "0.1.0"
def _info(self):
print("Calling _info")
return DatasetInfo(
features=Features({
'text': Value('string'),
'language': Value('string'),
}),
supervised_keys=('text', 'language')
)
def _split_generators(self, dl_manager):
print("Calling _split_generators")
urls = {
'train': 'https://huggingface.co/datasets/NbAiLab/nbnn_language_detection/resolve/main/train.jsonl',
'dev': 'https://huggingface.co/datasets/NbAiLab/nbnn_language_detection/resolve/main/dev.jsonl',
'test': 'https://huggingface.co/datasets/NbAiLab/nbnn_language_detection/resolve/main/test.jsonl',
}
downloaded_files = dl_manager.download(urls)
print(f"Downloaded files: {downloaded_files}")
return [
SplitGenerator(name=split, gen_kwargs={'filepath': downloaded_files[split]})
for split in urls.keys()
]
def _generate_examples(self, filepath):
print(f"Calling _generate_examples with filepath: {filepath}")
with open(filepath, 'r') as f:
for id, line in enumerate(f):
data = json.loads(line)
yield id, {
'text': data['text'],
'language': data['language']
}
|