|
import json |
|
import os |
|
from pathlib import Path |
|
import datasets |
|
from datasets import DownloadManager |
|
from PIL import Image |
|
|
|
_CITATION = "" |
|
_HOMEPAGE = "" |
|
_DESCRIPTION = "" |
|
_LICENSE = "" |
|
_DATA_URL = {"train" : "https://vizwiz.cs.colorado.edu/VizWiz_final/images/train.zip", |
|
"test" : "https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip", |
|
"val" : "https://vizwiz.cs.colorado.edu/VizWiz_final/images/val.zip" } |
|
_ANNOTATION_URL = "https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip" |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"id" : datasets.Value("int32"), |
|
"image": datasets.Image(), |
|
"filename": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.Sequence(datasets.Value("string")), |
|
"answers_original": [ |
|
{ |
|
"answer": datasets.Value("string"), |
|
"answer_confidence": datasets.Value("string"), |
|
} |
|
], |
|
"answer_type": datasets.Value("string"), |
|
"answerable": datasets.Value("int32") |
|
} |
|
) |
|
|
|
|
|
class VizWiz(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description = _DESCRIPTION, |
|
features = _FEATURES, |
|
homepage = _HOMEPAGE, |
|
license = _LICENSE, |
|
citation = _CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
ann_file_train = os.path.join(dl_manager.download_and_extract(_ANNOTATION_URL), "train.json") |
|
ann_file_val = os.path.join(dl_manager.download_and_extract(_ANNOTATION_URL), "val.json") |
|
ann_file_test = os.path.join(dl_manager.download_and_extract(_ANNOTATION_URL), "test.json") |
|
image_folders = {k: Path(v) for k, v in dl_manager.download_and_extract(_DATA_URL).items()} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_file": ann_file_train, |
|
"image_folders": image_folders, |
|
"split_key": 'train' |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotation_file": ann_file_val, |
|
"image_folders": image_folders, |
|
"split_key": "val" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_file": ann_file_test, |
|
"image_folders": image_folders, |
|
"split_key": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, annotation_file,image_folders,split_key): |
|
counter = 0 |
|
info = {} |
|
annotations = json.load(open(annotation_file)) |
|
for ann in annotations: |
|
if split_key in ['train','val']: |
|
answers = [answer["answer"] for answer in ann["answers"]] |
|
answers_original = ann['answers'] |
|
answer_type = ann["answer_type"] |
|
answerable = ann["answerable"] |
|
|
|
else: |
|
|
|
answers = None |
|
answers_original = None |
|
answer_type = None |
|
answerable = None |
|
|
|
yield counter, { |
|
"id" : counter, |
|
"image": str(image_folders[split_key]/split_key/ann['image']), |
|
"filename" : ann['image'], |
|
"question" : ann["question"], |
|
"answers" : answers, |
|
"answers_original" : answers_original, |
|
"answer_type" : answer_type, |
|
"answerable" : answerable |
|
} |
|
counter += 1 |
|
|