Upload metadata.yaml with huggingface_hub
Browse files- metadata.yaml +148 -0
metadata.yaml
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ag_news:
|
| 2 |
+
class_names:
|
| 3 |
+
- World
|
| 4 |
+
- Sports
|
| 5 |
+
- Business
|
| 6 |
+
- Technology
|
| 7 |
+
description: News categorization with 4 classes, known for similar content across
|
| 8 |
+
categories
|
| 9 |
+
name: AG News Classification
|
| 10 |
+
num_classes: 4
|
| 11 |
+
original_test_samples: 7600
|
| 12 |
+
original_train_samples: 120000
|
| 13 |
+
quality_issues:
|
| 14 |
+
- redundancy
|
| 15 |
+
- similar_content
|
| 16 |
+
- topic_overlap
|
| 17 |
+
target_column: label
|
| 18 |
+
task_type: multi_classification
|
| 19 |
+
test_samples: 7600
|
| 20 |
+
text_columns:
|
| 21 |
+
- text
|
| 22 |
+
total_samples: 127600
|
| 23 |
+
train_samples: 90000
|
| 24 |
+
validation_samples: 30000
|
| 25 |
+
amazon_polarity:
|
| 26 |
+
class_names:
|
| 27 |
+
- negative
|
| 28 |
+
- positive
|
| 29 |
+
description: Amazon reviews with noisy sentiment labels
|
| 30 |
+
name: Amazon Product Reviews
|
| 31 |
+
num_classes: 2
|
| 32 |
+
original_test_samples: 400000
|
| 33 |
+
original_train_samples: 3600000
|
| 34 |
+
quality_issues:
|
| 35 |
+
- label_noise
|
| 36 |
+
- rating_inconsistency
|
| 37 |
+
target_column: label
|
| 38 |
+
task_type: binary_classification
|
| 39 |
+
test_samples: 400000
|
| 40 |
+
text_columns:
|
| 41 |
+
- text
|
| 42 |
+
total_samples: 4000000
|
| 43 |
+
train_samples: 2700000
|
| 44 |
+
validation_samples: 900000
|
| 45 |
+
emotion:
|
| 46 |
+
class_names:
|
| 47 |
+
- sadness
|
| 48 |
+
- joy
|
| 49 |
+
- love
|
| 50 |
+
- anger
|
| 51 |
+
- fear
|
| 52 |
+
- surprise
|
| 53 |
+
description: Twitter emotion classification with text length outliers
|
| 54 |
+
name: Emotion Classification
|
| 55 |
+
num_classes: 6
|
| 56 |
+
original_test_samples: 41681
|
| 57 |
+
original_train_samples: 333447
|
| 58 |
+
quality_issues:
|
| 59 |
+
- length_outliers
|
| 60 |
+
- text_anomalies
|
| 61 |
+
target_column: label
|
| 62 |
+
task_type: multi_classification
|
| 63 |
+
test_samples: 41681
|
| 64 |
+
text_columns:
|
| 65 |
+
- text
|
| 66 |
+
total_samples: 375128
|
| 67 |
+
train_samples: 250085
|
| 68 |
+
validation_samples: 83362
|
| 69 |
+
imdb:
|
| 70 |
+
class_names:
|
| 71 |
+
- negative
|
| 72 |
+
- positive
|
| 73 |
+
description: Movie reviews with subjective sentiment labels and borderline cases
|
| 74 |
+
name: IMDB Movie Reviews
|
| 75 |
+
num_classes: 2
|
| 76 |
+
original_test_samples: 25000
|
| 77 |
+
original_train_samples: 25000
|
| 78 |
+
quality_issues:
|
| 79 |
+
- label_noise
|
| 80 |
+
- subjective_labels
|
| 81 |
+
- borderline_cases
|
| 82 |
+
target_column: label
|
| 83 |
+
task_type: binary_classification
|
| 84 |
+
test_samples: 25000
|
| 85 |
+
text_columns:
|
| 86 |
+
- text
|
| 87 |
+
total_samples: 50000
|
| 88 |
+
train_samples: 18750
|
| 89 |
+
validation_samples: 6250
|
| 90 |
+
twenty_newsgroups:
|
| 91 |
+
class_names:
|
| 92 |
+
- alt.atheism
|
| 93 |
+
- comp.graphics
|
| 94 |
+
- comp.os.ms-windows.misc
|
| 95 |
+
- comp.sys.ibm.pc.hardware
|
| 96 |
+
- comp.sys.mac.hardware
|
| 97 |
+
- comp.windows.x
|
| 98 |
+
- misc.forsale
|
| 99 |
+
- rec.autos
|
| 100 |
+
- rec.motorcycles
|
| 101 |
+
- rec.sport.baseball
|
| 102 |
+
- rec.sport.hockey
|
| 103 |
+
- sci.crypt
|
| 104 |
+
- sci.electronics
|
| 105 |
+
- sci.med
|
| 106 |
+
- sci.space
|
| 107 |
+
- soc.religion.christian
|
| 108 |
+
- talk.politics.guns
|
| 109 |
+
- talk.politics.mideast
|
| 110 |
+
- talk.politics.misc
|
| 111 |
+
- talk.religion.misc
|
| 112 |
+
description: Newsgroup posts with overlapping topics and cross-posting
|
| 113 |
+
name: 20 Newsgroups
|
| 114 |
+
num_classes: 20
|
| 115 |
+
original_test_samples: 7532
|
| 116 |
+
original_train_samples: 11314
|
| 117 |
+
quality_issues:
|
| 118 |
+
- redundancy
|
| 119 |
+
- cross_posting
|
| 120 |
+
- similar_topics
|
| 121 |
+
target_column: label
|
| 122 |
+
task_type: multi_classification
|
| 123 |
+
test_samples: 7532
|
| 124 |
+
text_columns:
|
| 125 |
+
- text
|
| 126 |
+
total_samples: 18846
|
| 127 |
+
train_samples: 8485
|
| 128 |
+
validation_samples: 2829
|
| 129 |
+
yelp_polarity:
|
| 130 |
+
class_names:
|
| 131 |
+
- negative
|
| 132 |
+
- positive
|
| 133 |
+
description: Yelp reviews with positive/negative sentiment, naturally imbalanced
|
| 134 |
+
name: Yelp Review Polarity
|
| 135 |
+
num_classes: 2
|
| 136 |
+
original_test_samples: 38000
|
| 137 |
+
original_train_samples: 560000
|
| 138 |
+
quality_issues:
|
| 139 |
+
- moderate_imbalance
|
| 140 |
+
- rating_bias
|
| 141 |
+
target_column: label
|
| 142 |
+
task_type: binary_classification
|
| 143 |
+
test_samples: 38000
|
| 144 |
+
text_columns:
|
| 145 |
+
- text
|
| 146 |
+
total_samples: 598000
|
| 147 |
+
train_samples: 420000
|
| 148 |
+
validation_samples: 140000
|