|
|
--- |
|
|
license: apache-2.0 |
|
|
task_categories: |
|
|
- text-classification |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- data-preprocessing |
|
|
- automl |
|
|
- quality-issues |
|
|
- benchmarks |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
- 10K<n<100K |
|
|
--- |
|
|
|
|
|
# Data Preprocessing AutoML Benchmarks |
|
|
|
|
|
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML. |
|
|
|
|
|
## Dataset Categories |
|
|
|
|
|
### Redundancy Issues |
|
|
- **ag_news**: News categorization with topic overlap |
|
|
- **twenty_newsgroups**: Newsgroup posts with cross-posting |
|
|
|
|
|
### Class Imbalance Issues |
|
|
- **yelp_polarity**: Sentiment analysis with rating bias |
|
|
- **sms_spam**: Spam detection with severe imbalance |
|
|
|
|
|
### Label Noise Issues |
|
|
- **imdb**: Movie reviews with subjective labels |
|
|
- **amazon_polarity**: Product reviews with rating inconsistencies |
|
|
|
|
|
### Outlier Issues |
|
|
- **emotion**: Twitter emotion with length outliers |
|
|
- **financial_phrasebank**: Financial sentiment with domain outliers |
|
|
|
|
|
### Clean Baselines |
|
|
- **trec**: Question classification with clean labels |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
Each dataset contains: |
|
|
- `train.csv`: Training split (~75% of original training data) |
|
|
- `validation.csv`: Validation split (~25% of original training data) |
|
|
- `test.csv`: Test split (original test set preserved) |
|
|
|
|
|
All datasets have consistent columns: |
|
|
- `text`: Input text |
|
|
- `label`: Target label (integer encoded) |
|
|
|
|
|
**Important**: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks. |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load a specific dataset |
|
|
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_news") |
|
|
|
|
|
# Access splits |
|
|
train_data = dataset["train"] |
|
|
val_data = dataset["validation"] |
|
|
test_data = dataset["test"] |
|
|
``` |
|
|
|
|
|
## Metadata |
|
|
|
|
|
ag_news: |
|
|
class_names: |
|
|
- World |
|
|
- Sports |
|
|
- Business |
|
|
- Technology |
|
|
description: News categorization with 4 classes, known for similar content across |
|
|
categories |
|
|
name: AG News Classification |
|
|
num_classes: 4 |
|
|
original_test_samples: 7600 |
|
|
original_train_samples: 120000 |
|
|
quality_issues: |
|
|
- redundancy |
|
|
- similar_content |
|
|
- topic_overlap |
|
|
target_column: label |
|
|
task_type: multi_classification |
|
|
test_samples: 7600 |
|
|
text_columns: |
|
|
- text |
|
|
total_samples: 127600 |
|
|
train_samples: 90000 |
|
|
validation_samples: 30000 |
|
|
amazon_polarity: |
|
|
class_names: |
|
|
- negative |
|
|
- positive |
|
|
description: Amazon reviews with noisy sentiment labels |
|
|
name: Amazon Product Reviews |
|
|
num_classes: 2 |
|
|
original_test_samples: 400000 |
|
|
original_train_samples: 3600000 |
|
|
quality_issues: |
|
|
- label_noise |
|
|
- rating_inconsistency |
|
|
target_column: label |
|
|
task_type: binary_classification |
|
|
test_samples: 400000 |
|
|
text_columns: |
|
|
- text |
|
|
total_samples: 4000000 |
|
|
train_samples: 2700000 |
|
|
validation_samples: 900000 |
|
|
emotion: |
|
|
class_names: |
|
|
- sadness |
|
|
- joy |
|
|
- love |
|
|
- anger |
|
|
- fear |
|
|
- surprise |
|
|
description: Twitter emotion classification with text length outliers |
|
|
name: Emotion Classification |
|
|
num_classes: 6 |
|
|
original_test_samples: 41681 |
|
|
original_train_samples: 333447 |
|
|
quality_issues: |
|
|
- length_outliers |
|
|
- text_anomalies |
|
|
target_column: label |
|
|
task_type: multi_classification |
|
|
test_samples: 41681 |
|
|
text_columns: |
|
|
- text |
|
|
total_samples: 375128 |
|
|
train_samples: 250085 |
|
|
validation_samples: 83362 |
|
|
imdb: |
|
|
class_names: |
|
|
- negative |
|
|
- positive |
|
|
description: Movie reviews with subjective sentiment labels and borderline cases |
|
|
name: IMDB Movie Reviews |
|
|
num_classes: 2 |
|
|
original_test_samples: 25000 |
|
|
original_train_samples: 25000 |
|
|
quality_issues: |
|
|
- label_noise |
|
|
- subjective_labels |
|
|
- borderline_cases |
|
|
target_column: label |
|
|
task_type: binary_classification |
|
|
test_samples: 25000 |
|
|
text_columns: |
|
|
- text |
|
|
total_samples: 50000 |
|
|
train_samples: 18750 |
|
|
validation_samples: 6250 |
|
|
twenty_newsgroups: |
|
|
class_names: |
|
|
- alt.atheism |
|
|
- comp.graphics |
|
|
- comp.os.ms-windows.misc |
|
|
- comp.sys.ibm.pc.hardware |
|
|
- comp.sys.mac.hardware |
|
|
- comp.windows.x |
|
|
- misc.forsale |
|
|
- rec.autos |
|
|
- rec.motorcycles |
|
|
- rec.sport.baseball |
|
|
- rec.sport.hockey |
|
|
- sci.crypt |
|
|
- sci.electronics |
|
|
- sci.med |
|
|
- sci.space |
|
|
- soc.religion.christian |
|
|
- talk.politics.guns |
|
|
- talk.politics.mideast |
|
|
- talk.politics.misc |
|
|
- talk.religion.misc |
|
|
description: Newsgroup posts with overlapping topics and cross-posting |
|
|
name: 20 Newsgroups |
|
|
num_classes: 20 |
|
|
original_test_samples: 7532 |
|
|
original_train_samples: 11314 |
|
|
quality_issues: |
|
|
- redundancy |
|
|
- cross_posting |
|
|
- similar_topics |
|
|
target_column: label |
|
|
task_type: multi_classification |
|
|
test_samples: 7532 |
|
|
text_columns: |
|
|
- text |
|
|
total_samples: 18846 |
|
|
train_samples: 8485 |
|
|
validation_samples: 2829 |
|
|
yelp_polarity: |
|
|
class_names: |
|
|
- negative |
|
|
- positive |
|
|
description: Yelp reviews with positive/negative sentiment, naturally imbalanced |
|
|
name: Yelp Review Polarity |
|
|
num_classes: 2 |
|
|
original_test_samples: 38000 |
|
|
original_train_samples: 560000 |
|
|
quality_issues: |
|
|
- moderate_imbalance |
|
|
- rating_bias |
|
|
target_column: label |
|
|
task_type: binary_classification |
|
|
test_samples: 38000 |
|
|
text_columns: |
|
|
- text |
|
|
total_samples: 598000 |
|
|
train_samples: 420000 |
|
|
validation_samples: 140000 |
|
|
|
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use these datasets in your research, please cite the original sources and this collection: |
|
|
|
|
|
```bibtex |
|
|
@misc{mothmalone2024preprocessing, |
|
|
title={Data Preprocessing AutoML Benchmarks}, |
|
|
author={MothMalone}, |
|
|
year={2024}, |
|
|
url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks} |
|
|
} |
|
|
``` |
|
|
|