MothMalone's picture
Upload README.md with huggingface_hub
dae248a verified
|
raw
history blame
5.47 kB
---
license: apache-2.0
task_categories:
- text-classification
language:
- en
tags:
- data-preprocessing
- automl
- quality-issues
- benchmarks
size_categories:
- 1K<n<10K
- 10K<n<100K
---
# Data Preprocessing AutoML Benchmarks
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
## Dataset Categories
### Redundancy Issues
- **ag_news**: News categorization with topic overlap
- **twenty_newsgroups**: Newsgroup posts with cross-posting
### Class Imbalance Issues
- **yelp_polarity**: Sentiment analysis with rating bias
- **sms_spam**: Spam detection with severe imbalance
### Label Noise Issues
- **imdb**: Movie reviews with subjective labels
- **amazon_polarity**: Product reviews with rating inconsistencies
### Outlier Issues
- **emotion**: Twitter emotion with length outliers
- **financial_phrasebank**: Financial sentiment with domain outliers
### Clean Baselines
- **trec**: Question classification with clean labels
## Dataset Structure
Each dataset contains:
- `train.csv`: Training split (~75% of original training data)
- `validation.csv`: Validation split (~25% of original training data)
- `test.csv`: Test split (original test set preserved)
All datasets have consistent columns:
- `text`: Input text
- `label`: Target label (integer encoded)
**Important**: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks.
## Usage
```python
from datasets import load_dataset
# Load a specific dataset
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_news")
# Access splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
```
## Metadata
ag_news:
class_names:
- World
- Sports
- Business
- Technology
description: News categorization with 4 classes, known for similar content across
categories
name: AG News Classification
num_classes: 4
original_test_samples: 7600
original_train_samples: 120000
quality_issues:
- redundancy
- similar_content
- topic_overlap
target_column: label
task_type: multi_classification
test_samples: 7600
text_columns:
- text
total_samples: 127600
train_samples: 90000
validation_samples: 30000
amazon_polarity:
class_names:
- negative
- positive
description: Amazon reviews with noisy sentiment labels
name: Amazon Product Reviews
num_classes: 2
original_test_samples: 400000
original_train_samples: 3600000
quality_issues:
- label_noise
- rating_inconsistency
target_column: label
task_type: binary_classification
test_samples: 400000
text_columns:
- text
total_samples: 4000000
train_samples: 2700000
validation_samples: 900000
emotion:
class_names:
- sadness
- joy
- love
- anger
- fear
- surprise
description: Twitter emotion classification with text length outliers
name: Emotion Classification
num_classes: 6
original_test_samples: 41681
original_train_samples: 333447
quality_issues:
- length_outliers
- text_anomalies
target_column: label
task_type: multi_classification
test_samples: 41681
text_columns:
- text
total_samples: 375128
train_samples: 250085
validation_samples: 83362
imdb:
class_names:
- negative
- positive
description: Movie reviews with subjective sentiment labels and borderline cases
name: IMDB Movie Reviews
num_classes: 2
original_test_samples: 25000
original_train_samples: 25000
quality_issues:
- label_noise
- subjective_labels
- borderline_cases
target_column: label
task_type: binary_classification
test_samples: 25000
text_columns:
- text
total_samples: 50000
train_samples: 18750
validation_samples: 6250
twenty_newsgroups:
class_names:
- alt.atheism
- comp.graphics
- comp.os.ms-windows.misc
- comp.sys.ibm.pc.hardware
- comp.sys.mac.hardware
- comp.windows.x
- misc.forsale
- rec.autos
- rec.motorcycles
- rec.sport.baseball
- rec.sport.hockey
- sci.crypt
- sci.electronics
- sci.med
- sci.space
- soc.religion.christian
- talk.politics.guns
- talk.politics.mideast
- talk.politics.misc
- talk.religion.misc
description: Newsgroup posts with overlapping topics and cross-posting
name: 20 Newsgroups
num_classes: 20
original_test_samples: 7532
original_train_samples: 11314
quality_issues:
- redundancy
- cross_posting
- similar_topics
target_column: label
task_type: multi_classification
test_samples: 7532
text_columns:
- text
total_samples: 18846
train_samples: 8485
validation_samples: 2829
yelp_polarity:
class_names:
- negative
- positive
description: Yelp reviews with positive/negative sentiment, naturally imbalanced
name: Yelp Review Polarity
num_classes: 2
original_test_samples: 38000
original_train_samples: 560000
quality_issues:
- moderate_imbalance
- rating_bias
target_column: label
task_type: binary_classification
test_samples: 38000
text_columns:
- text
total_samples: 598000
train_samples: 420000
validation_samples: 140000
## Citation
If you use these datasets in your research, please cite the original sources and this collection:
```bibtex
@misc{mothmalone2024preprocessing,
title={Data Preprocessing AutoML Benchmarks},
author={MothMalone},
year={2024},
url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks}
}
```