Create sudokuCSV_analyzer_v2.py
Browse files- sudokuCSV_analyzer_v2.py +197 -0
sudokuCSV_analyzer_v2.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# sudokuCSV_analyzer_v2.py
|
| 2 |
+
#
|
| 3 |
+
# Description:
|
| 4 |
+
# This script analyzes a 'sudoku.csv' file to identify duplicate and symmetric puzzles
|
| 5 |
+
# by comparing the FULLY SOLVED grids from the 'solutions' column.
|
| 6 |
+
#
|
| 7 |
+
# Main Functions:
|
| 8 |
+
# 1. Finds and logs pairs of solved grids that are exact duplicates.
|
| 9 |
+
# 2. Finds and logs pairs of solved grids that are rotations or mirrors of each other.
|
| 10 |
+
# 3. Generates histograms for two similarity metrics based on the solved grids.
|
| 11 |
+
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import numpy as np
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import seaborn as sns
|
| 16 |
+
from tqdm.auto import tqdm
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
# === HELPER FUNCTIONS =======================================================
|
| 20 |
+
|
| 21 |
+
def string_to_grid(s: str) -> np.ndarray:
|
| 22 |
+
"""Converts an 81-character string to a 9x9 NumPy array."""
|
| 23 |
+
return np.array(list(map(int, s))).reshape((9, 9))
|
| 24 |
+
|
| 25 |
+
def grid_to_string(g: np.ndarray) -> str:
|
| 26 |
+
"""Converts a 9x9 NumPy array back to an 81-character string."""
|
| 27 |
+
return "".join(map(str, g.flatten()))
|
| 28 |
+
|
| 29 |
+
def get_all_symmetries(grid: np.ndarray) -> set:
|
| 30 |
+
"""
|
| 31 |
+
Generates all 8 unique symmetries (rotations and mirrors) for a given grid.
|
| 32 |
+
Returns a set of the grids represented as strings.
|
| 33 |
+
"""
|
| 34 |
+
symmetries = set()
|
| 35 |
+
current_grid = grid.copy()
|
| 36 |
+
|
| 37 |
+
for _ in range(4): # 4 rotations
|
| 38 |
+
symmetries.add(grid_to_string(current_grid))
|
| 39 |
+
symmetries.add(grid_to_string(np.flipud(current_grid))) # Horizontal mirror
|
| 40 |
+
current_grid = np.rot90(current_grid)
|
| 41 |
+
|
| 42 |
+
return symmetries
|
| 43 |
+
|
| 44 |
+
def compare_cell_similarity(grid1: np.ndarray, grid2: np.ndarray) -> int:
|
| 45 |
+
"""Counts the number of cells that have the same value in the same position."""
|
| 46 |
+
return np.sum(grid1 == grid2)
|
| 47 |
+
|
| 48 |
+
def compare_digit_frequency_similarity(grid1: np.ndarray, grid2: np.ndarray) -> int:
|
| 49 |
+
"""
|
| 50 |
+
Counts how many digits (1-9) have the same frequency in both grids.
|
| 51 |
+
"""
|
| 52 |
+
# Since we are using solved grids, there are no zeros to filter.
|
| 53 |
+
# The logic remains robust if ever used with unsolved puzzles.
|
| 54 |
+
vals1, counts1 = np.unique(grid1, return_counts=True)
|
| 55 |
+
vals2, counts2 = np.unique(grid2, return_counts=True)
|
| 56 |
+
|
| 57 |
+
freq_map1 = dict(zip(vals1, counts1))
|
| 58 |
+
freq_map2 = dict(zip(vals2, counts2))
|
| 59 |
+
|
| 60 |
+
similar_freq_count = 0
|
| 61 |
+
for digit in range(1, 10):
|
| 62 |
+
if freq_map1.get(digit, 0) == freq_map2.get(digit, 0):
|
| 63 |
+
similar_freq_count += 1
|
| 64 |
+
|
| 65 |
+
return similar_freq_count
|
| 66 |
+
|
| 67 |
+
# === MAIN ANALYSIS FUNCTION =================================================
|
| 68 |
+
|
| 69 |
+
def analyze_solved_grids(
|
| 70 |
+
csv_path: str = 'sudoku.csv',
|
| 71 |
+
start_index: int = 0,
|
| 72 |
+
end_index: int = 600,
|
| 73 |
+
min_diff_cells_for_log: int = 4
|
| 74 |
+
):
|
| 75 |
+
"""
|
| 76 |
+
Main function to drive the analysis of the solved sudoku grids.
|
| 77 |
+
"""
|
| 78 |
+
print("--- Sudoku Solved Grid Analyzer ---")
|
| 79 |
+
|
| 80 |
+
# 1. Load Data
|
| 81 |
+
if not os.path.exists(csv_path):
|
| 82 |
+
print(f"ERROR: The file '{csv_path}' was not found.")
|
| 83 |
+
print("Please ensure the sudoku data file is in the same directory.")
|
| 84 |
+
return
|
| 85 |
+
|
| 86 |
+
print(f"Loading data from '{csv_path}'...")
|
| 87 |
+
df = pd.read_csv(csv_path)
|
| 88 |
+
|
| 89 |
+
if 'solutions' not in df.columns:
|
| 90 |
+
print("ERROR: The CSV file must contain a 'solutions' column with fully solved grids.")
|
| 91 |
+
return
|
| 92 |
+
|
| 93 |
+
# Ensure the range is valid
|
| 94 |
+
if end_index > len(df):
|
| 95 |
+
print(f"Warning: end_index ({end_index}) is greater than number of puzzles ({len(df)}). Adjusting to max.")
|
| 96 |
+
end_index = len(df)
|
| 97 |
+
if start_index >= end_index:
|
| 98 |
+
print("Error: start_index must be less than end_index.")
|
| 99 |
+
return
|
| 100 |
+
|
| 101 |
+
# *** KEY CHANGE IS HERE: Use the 'solutions' column ***
|
| 102 |
+
print("Analyzing the 'solutions' column (fully solved grids).")
|
| 103 |
+
puzzle_solutions = df['solutions'].iloc[start_index:end_index].tolist()
|
| 104 |
+
grids = [string_to_grid(p) for p in puzzle_solutions]
|
| 105 |
+
num_grids = len(grids)
|
| 106 |
+
print(f"Analysis will be performed on {num_grids} solved grids (indices {start_index} to {end_index-1}).")
|
| 107 |
+
|
| 108 |
+
# 2. Prepare data structures for results
|
| 109 |
+
exact_duplicates = []
|
| 110 |
+
symmetry_pairs = []
|
| 111 |
+
cell_similarity_counts = []
|
| 112 |
+
digit_freq_similarity_counts = []
|
| 113 |
+
|
| 114 |
+
print("\nStarting pairwise comparison... This may take a while.")
|
| 115 |
+
|
| 116 |
+
# 3. Perform pairwise comparison
|
| 117 |
+
for i in tqdm(range(num_grids), desc="Analyzing Solved Grids"):
|
| 118 |
+
grid_i = grids[i]
|
| 119 |
+
symmetries_of_i = get_all_symmetries(grid_i)
|
| 120 |
+
|
| 121 |
+
for j in range(i + 1, num_grids):
|
| 122 |
+
grid_j = grids[j]
|
| 123 |
+
|
| 124 |
+
if np.array_equal(grid_i, grid_j):
|
| 125 |
+
exact_duplicates.append({'index_1': start_index + i, 'index_2': start_index + j})
|
| 126 |
+
continue
|
| 127 |
+
|
| 128 |
+
if grid_to_string(grid_j) in symmetries_of_i:
|
| 129 |
+
symmetry_pairs.append({'index_1': start_index + i, 'index_2': start_index + j})
|
| 130 |
+
|
| 131 |
+
num_same_cells = compare_cell_similarity(grid_i, grid_j)
|
| 132 |
+
|
| 133 |
+
if (81 - num_same_cells) >= min_diff_cells_for_log:
|
| 134 |
+
cell_similarity_counts.append(num_same_cells)
|
| 135 |
+
digit_freq_similarity_counts.append(compare_digit_frequency_similarity(grid_i, grid_j))
|
| 136 |
+
|
| 137 |
+
print("\nAnalysis complete. Saving results...")
|
| 138 |
+
|
| 139 |
+
# 4. Save results to CSV files
|
| 140 |
+
if exact_duplicates:
|
| 141 |
+
duplicates_df = pd.DataFrame(exact_duplicates)
|
| 142 |
+
duplicates_df.to_csv('solved_exact_duplicates.csv', index=False)
|
| 143 |
+
print(f"Found {len(duplicates_df)} exact duplicate pairs. Logged to 'solved_exact_duplicates.csv'.")
|
| 144 |
+
else:
|
| 145 |
+
print("No exact duplicates found in the specified range.")
|
| 146 |
+
|
| 147 |
+
if symmetry_pairs:
|
| 148 |
+
symmetry_df = pd.DataFrame(symmetry_pairs)
|
| 149 |
+
symmetry_df.to_csv('solved_possible_symmetry_pairs.csv', index=False)
|
| 150 |
+
print(f"Found {len(symmetry_df)} potential symmetry pairs. Logged to 'solved_possible_symmetry_pairs.csv'.")
|
| 151 |
+
else:
|
| 152 |
+
print("No symmetry pairs found in the specified range.")
|
| 153 |
+
|
| 154 |
+
# 5. Generate and save histograms
|
| 155 |
+
sns.set_style("darkgrid")
|
| 156 |
+
|
| 157 |
+
# Histogram 1: Cell Similarity
|
| 158 |
+
plt.figure(figsize=(12, 6))
|
| 159 |
+
sns.histplot(cell_similarity_counts, bins=81, kde=False)
|
| 160 |
+
plt.title(f'Distribution of Cell Similarity on Solved Grids ({num_grids} Grids)', fontsize=16)
|
| 161 |
+
plt.xlabel('Number of Identical Cells in Same Position (out of 81)', fontsize=12)
|
| 162 |
+
plt.ylabel('Frequency (Number of Pairs)', fontsize=12)
|
| 163 |
+
plt.xlim(0, 81)
|
| 164 |
+
plt.tight_layout()
|
| 165 |
+
plt.savefig('solved_cell_similarity_histogram.png')
|
| 166 |
+
plt.close()
|
| 167 |
+
print("Saved 'solved_cell_similarity_histogram.png'.")
|
| 168 |
+
|
| 169 |
+
# Histogram 2: Digit Frequency Similarity
|
| 170 |
+
plt.figure(figsize=(12, 6))
|
| 171 |
+
sns.histplot(digit_freq_similarity_counts, bins=10, discrete=True, kde=False)
|
| 172 |
+
plt.title(f'Distribution of Digit Frequency Similarity on Solved Grids ({num_grids} Grids)', fontsize=16)
|
| 173 |
+
plt.xlabel('Number of Digits (1-9) with Same Frequency in Both Grids', fontsize=12)
|
| 174 |
+
plt.ylabel('Frequency (Number of Pairs)', fontsize=12)
|
| 175 |
+
plt.xticks(range(10))
|
| 176 |
+
plt.tight_layout()
|
| 177 |
+
plt.savefig('solved_digit_frequency_similarity_histogram.png')
|
| 178 |
+
plt.close()
|
| 179 |
+
print("Saved 'solved_digit_frequency_similarity_histogram.png'.")
|
| 180 |
+
|
| 181 |
+
print("\n--- Analysis Finished ---")
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
if __name__ == '__main__':
|
| 185 |
+
# --- Configuration ---
|
| 186 |
+
DATA_FILE_PATH = 'sudoku.csv'
|
| 187 |
+
START_PUZZLE_INDEX = 0
|
| 188 |
+
END_PUZZLE_INDEX = 600
|
| 189 |
+
MIN_DIFFERENT_CELLS = 4
|
| 190 |
+
|
| 191 |
+
# --- Execution ---
|
| 192 |
+
analyze_solved_grids(
|
| 193 |
+
csv_path=DATA_FILE_PATH,
|
| 194 |
+
start_index=START_PUZZLE_INDEX,
|
| 195 |
+
end_index=END_PUZZLE_INDEX,
|
| 196 |
+
min_diff_cells_for_log=MIN_DIFFERENT_CELLS
|
| 197 |
+
)
|