File size: 4,314 Bytes
0edb09e
 
 
7d3bfbb
 
0edb09e
 
 
 
80bef96
 
 
 
 
cca935a
b6c0679
 
0edb09e
38fd8ac
 
 
5e8320c
38fd8ac
9d9cfd2
ef855d6
 
 
9d9cfd2
ef855d6
 
9d9cfd2
ef855d6
 
 
 
 
9d9cfd2
ef855d6
 
9d9cfd2
7ae954a
64aecbd
7ae954a
9d9cfd2
38fd8ac
 
7ae954a
38fd8ac
7ae954a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b704e
7ae954a
 
 
 
de366b6
7bc88ee
 
38fd8ac
 
9d9cfd2
942f936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9cfd2
a836a3a
 
 
 
 
 
 
 
 
 
7d3bfbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: apache-2.0
task_categories:
- multiple-choice
- visual-question-answering
language:
- en
size_categories:
- n<1K
configs:
- config_name: benchmark
  data_files:
  - split: test
    path: dataset.json
paperswithcode_id: mapeval-visual
tags:
- geospatial
---

# MapEval-Visual

This dataset was introduced in [MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models](https://arxiv.org/abs/2501.00316)

# Example

![Image](example.jpg)

#### Query
I am presently visiting Mount Royal Park . Could you please inform me about the nearby historical landmark?

#### Options
1. Circle Stone
2. Secret pool
3. Maison William Caldwell Cottingham
4. Poste de cavalerie du Service de police de la Ville de Montreal

#### Correct Option
1. Circle Stone

# Prerequisite

Download the [Vdata.zip](https://huggingface.co/datasets/MapEval/MapEval-Visual/resolve/main/Vdata.zip?download=true) and extract in the working directory. This directory contains all the images.

# Usage
```python
from datasets import load_dataset
import PIL.Image
# Load dataset
ds = load_dataset("MapEval/MapEval-Visual", name="benchmark")

for item in ds["test"]:
   
    # Start with a clear task description
    prompt = (
        "You are a highly intelligent assistant. "
        "Based on the given image, answer the multiple-choice question by selecting the correct option.\n\n"
        "Question:\n" + item["question"] + "\n\n"
        "Options:\n"
    )
    
    # List the options more clearly
    for i, option in enumerate(item["options"], start=1):
        prompt += f"{i}. {option}\n"
    
    # Add a concluding sentence to encourage selection of the answer
    prompt += "\nSelect the best option by choosing its number."
    
    # Load image from Vdata/ directory
    img = PIL.Image.open(item["context"])
    
    # Use the prompt as needed
    print([prompt, img])  # Replace with your processing logic

    # Then match the output with item["answer"] or item["options"][item["answer"]-1]
    # If item["answer"] == 0: then it's unanswerable
```

# Leaderboard

| Model                     | Overall | Place Info | Nearby | Routing | Counting | Unanswerable |
|---------------------------|:-------:|:----------:|:------:|:-------:|:--------:|:------------:|
| Claude-3.5-Sonnet         | **61.65**   | **82.64**      | 55.56  | **45.00**   | **47.73**    | **90.00**        |
| GPT-4o                    | 58.90   | 76.86      | **57.78**  | 50.00   | **47.73**    | 40.00        |
| Gemini-1.5-Pro            | 56.14   | 76.86      | 56.67  | 43.75   | 32.95    | 80.00        |
| GPT-4-Turbo               | 55.89   | 75.21      | 56.67  | 42.50   | 44.32    | 40.00        |
| Gemini-1.5-Flash          | 51.94   | 70.25      | 56.47  | 38.36   | 32.95    | 55.00        |
| GPT-4o-mini               | 50.13   | 77.69      | 47.78  | 41.25   | 28.41    | 25.00        |
| Qwen2-VL-7B-Instruct      | 51.63   | 71.07      | 48.89  | 40.00   | 40.91    | 40.00        |
| Glm-4v-9b                 | 48.12   | 73.55      | 42.22  | 41.25   | 34.09    | 10.00        |
| InternLm-Xcomposer2       | 43.11   | 70.41      | 48.89  | 43.75   | 34.09    | 10.00        |
| MiniCPM-Llama3-V-2.5      | 40.60   | 60.33      | 32.22  | 32.50   | 31.82    | 30.00        |
| Llama-3-VILA1.5-8B        | 32.99   | 46.90      | 32.22  | 28.75   | 26.14    | 5.00         |
| DocOwl1.5                 | 31.08   | 43.80      | 23.33  | 32.50   | 27.27    | 0.00         |
| Llava-v1.6-Mistral-7B-hf  | 31.33   | 42.15      | 28.89  | 32.50   | 21.59    | 15.00        |
| Paligemma-3B-mix-224      | 30.58   | 37.19      | 25.56  | 38.75   | 23.86    | 10.00        |
| Llava-1.5-7B-hf           | 20.05   | 22.31      | 18.89  | 13.75   | 28.41    | 0.00         |
| Human                     | 82.23   | 81.67      | 82.42  | 85.18   | 78.41    | 65.00        |

# Citation

If you use this dataset, please cite the original paper:

```
@article{dihan2024mapeval,
  title={MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models},
  author={Dihan, Mahir Labib and Hassan, Md Tanvir and Parvez, Md Tanvir and Hasan, Md Hasebul and Alam, Md Almash and Cheema, Muhammad Aamir and Ali, Mohammed Eunus and Parvez, Md Rizwan},
  journal={arXiv preprint arXiv:2501.00316},
  year={2024}
}
```