Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,422 Bytes
d0bc662
62ab471
 
d0bc662
62ab471
 
c1c4242
 
 
 
 
 
62ab471
de94bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ab471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bba00
62ab471
57bba00
 
62ab471
de94bf5
 
 
 
62ab471
 
 
 
d0bc662
c1c4242
 
 
38814a9
c1c4242
 
 
 
dc844c0
c1c4242
 
 
 
 
 
dc844c0
c1c4242
 
a815fa1
c1c4242
 
dc844c0
c1c4242
 
a815fa1
c1c4242
a815fa1
 
 
c1c4242
1895931
 
 
 
 
a815fa1
 
 
 
 
 
 
 
 
 
 
 
dc844c0
c1c4242
a815fa1
c1c4242
a815fa1
c1c4242
a815fa1
 
 
 
 
 
 
 
 
c1c4242
 
a815fa1
 
 
c1c4242
 
 
 
a815fa1
f3c893e
 
 
 
 
 
35568ab
f3c893e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
language:
- en
license: mit
size_categories:
- n<1K
task_categories:
- text-generation
tags:
- math world problems
- math
- arithmetics
dataset_info:
- config_name: default
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  - name: equation
    dtype: string
  - name: problem_type
    dtype: string
  splits:
  - name: test
    num_bytes: 335744
    num_examples: 1000
  download_size: 116449
  dataset_size: 335744
- config_name: original-splits
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  - name: equation
    dtype: string
  - name: problem_type
    dtype: string
  splits:
  - name: test
    num_bytes: 335744
    num_examples: 1000
  download_size: 116449
  dataset_size: 335744
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
- config_name: original-splits
  data_files:
  - split: test
    path: original-splits/test-*
---



# Dataset Card for Calc-SVAMP


## Summary

The dataset is a collection of simple math word problems focused on arithmetics. It is derived from <https://github.com/arkilpatel/SVAMP/>.

The main addition in this dataset variant is the `chain` column. It was created by converting the solution to a simple html-like language that can be easily
parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:

- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer to the mathematical problem (a number)


## Supported Tasks

This variant of the dataset is intended for training Chain-of-Thought reasoning models able to use external tools to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.


## Construction process

We created the dataset by converting the **equation** attribute in the original dataset to a sequence (chain) of calculations, with final one being the result to the math problem.
We also perform in-dataset and cross-dataset data-leak detection within the [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
However, for SVAMP specifically, we detected no data leaks and filtered no data.

## Content and data splits

The dataset contains the same data instances as the original dataset except for a correction of inconsistency between `equation` and `answer` in one data instance.
To the best of our knowledge, the original dataset does not contain an official train-test split. We treat the whole dataset as a testing benchmark.


## Attributes:

- **id**: problem id from the original dataset
- **question**: the question intended to answer
- **chain**: series of simple operations (derived from `equation`) that leads to the solution
- **result**: the result (number) as a string
- **result_float**: result converted to a floating point
- **equation**: a nested expression that evaluates to the correct result
- **problem_type**: a category of the problem

Attributes **id**, **question**, **chain**, and **result** are present in all datasets in [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).


## Related work

This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.

- [**Calc-X collection**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) - datasets for training Calcformers
- [**Calcformers collection**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - calculator-using models we trained and published on HF
- [**Calc-X and Calcformers paper**](https://arxiv.org/abs/2305.15017)
- [**Calc-X and Calcformers repo**](https://github.com/prompteus/calc-x)

Here are links to the original dataset:

- [**original SVAMP dataset and repo**](https://github.com/arkilpatel/SVAMP/)
- [**original SVAMP paper**](https://www.semanticscholar.org/paper/Are-NLP-Models-really-able-to-Solve-Simple-Math-Patel-Bhattamishra/13c4e5a6122f3fa2663f63e49537091da6532f35)


## Licence

MIT, consistent with the original source dataset linked above.


## Cite

If you use this version of dataset in research, please cite the original [SVAMP paper](https://www.semanticscholar.org/paper/Are-NLP-Models-really-able-to-Solve-Simple-Math-Patel-Bhattamishra/13c4e5a6122f3fa2663f63e49537091da6532f35), and [Calc-X collection](https://arxiv.org/abs/2305.15017) as follows:

```bibtex
@inproceedings{kadlcik-etal-2023-soft,
    title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
    author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
    booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
    month = dec,
    year = "2023",
    address = "Singapore, Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2305.15017",
}
```