Upload folder using huggingface_hub
Browse files
lmms_eval/tasks/mintmcq/utils.py
CHANGED
@@ -16,14 +16,12 @@ from lmms_eval.tasks._task_utils.file_utils import generate_submission_file
|
|
16 |
|
17 |
VIDEO_TYPE = ["short", "medium", "long"]
|
18 |
CATEGORIES = ["Artistic Performance", "Culture", "Digital Content", "Knowledge", "Life Record", "Others", "Sports Competition"]
|
19 |
-
|
20 |
-
replace_prompt = " Please answer yes or no."
|
21 |
|
22 |
with open(Path(__file__).parent / "_default_template_yaml", "r") as f:
|
23 |
raw_data = f.readlines()
|
24 |
safe_data = []
|
25 |
for i, line in enumerate(raw_data):
|
26 |
-
# remove function definition since yaml load cannot handle it
|
27 |
if "!function" not in line:
|
28 |
safe_data.append(line)
|
29 |
|
@@ -37,7 +35,6 @@ cache_name = config["dataset_kwargs"]["cache_dir"]
|
|
37 |
def convert_time_to_frame(time_in_seconds, fps):
|
38 |
return int(time_in_seconds * fps)
|
39 |
|
40 |
-
|
41 |
def mint_doc_to_visual(doc):
|
42 |
cache_dir = os.path.join(base_cache_dir, cache_name)
|
43 |
video_path = doc["mint_video_id"]
|
@@ -56,7 +53,7 @@ def mint_doc_to_visual(doc):
|
|
56 |
def mint_doc_to_text(doc, lmms_eval_specific_kwargs=None):
|
57 |
option_prompt = "Select the best answer to the following multiple-choice question based on the video and the subtitles. Respond with only the letter (A, B, C, or D) of the correct option."
|
58 |
question = doc["question"]
|
59 |
-
option = "\n".join([f"{opt}" for i, opt in enumerate(doc["options"])])
|
60 |
question = question + "\n" + option
|
61 |
post_prompt = lmms_eval_specific_kwargs["post_prompt"] if "post_prompt" in lmms_eval_specific_kwargs else "The best answer is:"
|
62 |
full_prompt = option_prompt + "\n" + question + "\n" + post_prompt
|
@@ -69,7 +66,8 @@ def extract_characters_regex(s):
|
|
69 |
"The correct answer is",
|
70 |
"The answer is",
|
71 |
"The answer",
|
72 |
-
"The best option is"
|
|
|
73 |
"Best answer:" "Best option:",
|
74 |
]
|
75 |
for answer_prefix in answer_prefixes:
|
@@ -102,13 +100,9 @@ def mint_process_results(doc, results):
|
|
102 |
pred_ans = extract_characters_regex(pred)
|
103 |
|
104 |
category = doc["video_category"]
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
# return {f"mint_percetion_score": data_dict for metric in matrices}
|
110 |
-
return {f"mint_percetion_score": data_dict}
|
111 |
-
|
112 |
|
113 |
def mint_aggregate_results(results):
|
114 |
"""
|
@@ -127,11 +121,10 @@ def mint_aggregate_results(results):
|
|
127 |
for result in results:
|
128 |
video_type = result["duration"]
|
129 |
category = result["category"]
|
130 |
-
# sub_category = result["sub_category"]
|
131 |
-
# task_category = result["task_category"]
|
132 |
key = f"{video_type}_{category}"
|
133 |
category2score[key]["answered"] += 1
|
134 |
-
category2score[key]["correct"] += result["pred_answer"] == result["answer"]
|
|
|
135 |
|
136 |
for video_type in VIDEO_TYPE:
|
137 |
total_correct = 0
|
@@ -151,24 +144,6 @@ def mint_aggregate_results(results):
|
|
151 |
total_answered += v["answered"]
|
152 |
eval_logger.info(f"Evaluation on Categories: {category}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
153 |
|
154 |
-
# for sub_cate in SUB_CATEGORIES:
|
155 |
-
# total_correct = 0
|
156 |
-
# total_answered = 0
|
157 |
-
# for k, v in category2score.items():
|
158 |
-
# if sub_cate in k:
|
159 |
-
# total_correct += v["correct"]
|
160 |
-
# total_answered += v["answered"]
|
161 |
-
# eval_logger.info(f"Evaluation on Video Sub Categories: {sub_cate}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
162 |
-
|
163 |
-
# for task_cate in TASK_CATEGORIES:
|
164 |
-
# total_correct = 0
|
165 |
-
# total_answered = 0
|
166 |
-
# for k, v in category2score.items():
|
167 |
-
# if task_cate in k:
|
168 |
-
# total_correct += v["correct"]
|
169 |
-
# total_answered += v["answered"]
|
170 |
-
# eval_logger.info(f"Evaluation on Task Categories: {task_cate}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
171 |
-
|
172 |
total_correct = 0
|
173 |
total_answered = 0
|
174 |
for k, v in category2score.items():
|
|
|
16 |
|
17 |
VIDEO_TYPE = ["short", "medium", "long"]
|
18 |
CATEGORIES = ["Artistic Performance", "Culture", "Digital Content", "Knowledge", "Life Record", "Others", "Sports Competition"]
|
19 |
+
OPTION_MAP = ['A','B','C','D','E','F','G','H']
|
|
|
20 |
|
21 |
with open(Path(__file__).parent / "_default_template_yaml", "r") as f:
|
22 |
raw_data = f.readlines()
|
23 |
safe_data = []
|
24 |
for i, line in enumerate(raw_data):
|
|
|
25 |
if "!function" not in line:
|
26 |
safe_data.append(line)
|
27 |
|
|
|
35 |
def convert_time_to_frame(time_in_seconds, fps):
|
36 |
return int(time_in_seconds * fps)
|
37 |
|
|
|
38 |
def mint_doc_to_visual(doc):
|
39 |
cache_dir = os.path.join(base_cache_dir, cache_name)
|
40 |
video_path = doc["mint_video_id"]
|
|
|
53 |
def mint_doc_to_text(doc, lmms_eval_specific_kwargs=None):
|
54 |
option_prompt = "Select the best answer to the following multiple-choice question based on the video and the subtitles. Respond with only the letter (A, B, C, or D) of the correct option."
|
55 |
question = doc["question"]
|
56 |
+
option = "\n".join([f"{OPTION_MAP[i]}. {opt}" for i, opt in enumerate(doc["options"])])
|
57 |
question = question + "\n" + option
|
58 |
post_prompt = lmms_eval_specific_kwargs["post_prompt"] if "post_prompt" in lmms_eval_specific_kwargs else "The best answer is:"
|
59 |
full_prompt = option_prompt + "\n" + question + "\n" + post_prompt
|
|
|
66 |
"The correct answer is",
|
67 |
"The answer is",
|
68 |
"The answer",
|
69 |
+
"The best option is",
|
70 |
+
"The correct option is",
|
71 |
"Best answer:" "Best option:",
|
72 |
]
|
73 |
for answer_prefix in answer_prefixes:
|
|
|
100 |
pred_ans = extract_characters_regex(pred)
|
101 |
|
102 |
category = doc["video_category"]
|
103 |
+
doc["answer_option"] = OPTION_MAP[doc["options"].index(doc["answer"])]
|
104 |
+
data_dict = {"question_id": doc["id"], "duration": doc["duration"], "category": category, "pred_answer": pred_ans, "answer": doc["answer"], "answer_option": doc["answer_option"]}
|
105 |
+
return {f"mint_perception_score": data_dict}
|
|
|
|
|
|
|
|
|
106 |
|
107 |
def mint_aggregate_results(results):
|
108 |
"""
|
|
|
121 |
for result in results:
|
122 |
video_type = result["duration"]
|
123 |
category = result["category"]
|
|
|
|
|
124 |
key = f"{video_type}_{category}"
|
125 |
category2score[key]["answered"] += 1
|
126 |
+
# category2score[key]["correct"] += result["pred_answer"] == result["answer"]
|
127 |
+
category2score[key]["correct"] += result["pred_answer"] == result["answer_option"]
|
128 |
|
129 |
for video_type in VIDEO_TYPE:
|
130 |
total_correct = 0
|
|
|
144 |
total_answered += v["answered"]
|
145 |
eval_logger.info(f"Evaluation on Categories: {category}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
total_correct = 0
|
148 |
total_answered = 0
|
149 |
for k, v in category2score.items():
|