--- license: mit configs: - config_name: default data_files: - split: test path: data/test-* dataset_info: features: - name: task_id dtype: string - name: scenario_id dtype: string - name: env_id dtype: string - name: api_specification dtype: string - name: text_specification dtype: string - name: short_app_description dtype: string - name: scenario_instructions dtype: string - name: needs_db dtype: bool - name: needs_secret dtype: bool - name: needed_packages struct: - name: JavaScript sequence: string - name: _all_ sequence: string - name: potential_cwes sequence: int64 - name: env_language dtype: string - name: env_extension dtype: string - name: env_framework dtype: string - name: env_multifile dtype: bool - name: code_filename dtype: string - name: entrypoint_cmd dtype: string - name: allowed_packages dtype: string - name: env_instructions dtype: string - name: port dtype: int64 splits: - name: test num_bytes: 1830262 num_examples: 392 download_size: 70540 dataset_size: 1830262 task_categories: - text-generation tags: - code - security - benchmark size_categories: - n<1K --- ### Dataset Summary BaxBench is a coding benchmark constructed to measure the ability of code generation models and agents to generate correct and secure code. It consists of 392 backend development tasks, which are constructed by combining 28 scenarios that describe the backend functionalities to implement and 14 backend frameworks defining the implementation tools. To assess the correctness and security of the solutions, the benchmark uses end-to-end functional tests and practical securtiy exploits. The dataset is released as part of the paper and benchmark: [BaxBench: Can LLMs generate Correct and Secure Backends?](https://arxiv.org/abs/2502.11844). The dataset contains all necessary artifacts to reproduce the evaluation prompts used in our paper. Further, it enables the testing of different prompt structures or models by forming new prompt types, e.g., for testing code agents. For details on reproducing our results, or testing your models on the same prompts, please refer to our [paper](https://arxiv.org/abs/2502.11844) or [code repository](https://github.com/logic-star-ai/baxbench). To test your generated solutions, please follow the instructions in our [code repository](https://github.com/logic-star-ai/baxbench). For more details on the construction of BaxBench, large-scale model evaluation results, and detailed analyses, please see our [paper](https://arxiv.org/abs/2502.11844) or visit our [website](https://baxbench.com). ### Citation **BibTeX:** ``` @article{vero2025baxbenchllmsgeneratecorrect, title={BaxBench: Can LLMs Generate Correct and Secure Backends?}, author={Mark Vero and Niels Mündler and Victor Chibotaru and Veselin Raychev and Maximilian Baader and Nikola Jovanović and Jingxuan He and Martin Vechev}, year={2025}, eprint={2502.11844}, archivePrefix={arXiv}, } ```