|
"""Calculates the CLIP Scores |
|
|
|
The CLIP model is a contrasitively learned language-image model. There is |
|
an image encoder and a text encoder. It is believed that the CLIP model could |
|
measure the similarity of cross modalities. Please find more information from |
|
https://github.com/openai/CLIP. |
|
|
|
The CLIP Score measures the Cosine Similarity between two embedded features. |
|
This repository utilizes the pretrained CLIP Model to calculate |
|
the mean average of cosine similarities. |
|
|
|
See --help to see further details. |
|
|
|
Code apapted from https://github.com/mseitzer/pytorch-fid and https://github.com/openai/CLIP. |
|
|
|
Copyright 2023 The Hong Kong Polytechnic University |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
""" |
|
import os |
|
import os.path as osp |
|
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser |
|
|
|
import clip |
|
import torch |
|
from PIL import Image |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
try: |
|
from tqdm import tqdm |
|
except ImportError: |
|
|
|
def tqdm(x): |
|
return x |
|
|
|
|
|
IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm', |
|
'tif', 'tiff', 'webp'} |
|
|
|
TEXT_EXTENSIONS = {'txt'} |
|
|
|
|
|
class DummyDataset(Dataset): |
|
|
|
FLAGS = ['img', 'txt'] |
|
def __init__(self, real_path, generated_path, |
|
real_flag: str = 'img', |
|
generated_flag: str = 'img', |
|
transform = None, |
|
tokenizer = None) -> None: |
|
super().__init__() |
|
assert real_flag in self.FLAGS and generated_flag in self.FLAGS, \ |
|
'CLIP Score only support modality of {}. However, get {} and {}'.format( |
|
self.FLAGS, real_flag, generated_flag |
|
) |
|
self.real_folder = self._combine_without_prefix(real_path) |
|
self.real_flag = real_flag |
|
self.fake_foler = self._combine_without_prefix(generated_path) |
|
self.generated_flag = generated_flag |
|
self.transform = transform |
|
self.tokenizer = tokenizer |
|
|
|
|
|
def __len__(self): |
|
return len(self.real_folder) |
|
|
|
def __getitem__(self, index): |
|
if index >= len(self): |
|
raise IndexError |
|
real_path = self.real_folder[index] |
|
generated_path = self.fake_foler[index] |
|
real_data = self._load_modality(real_path, self.real_flag) |
|
fake_data = self._load_modality(generated_path, self.generated_flag) |
|
|
|
sample = dict(real=real_data, fake=fake_data) |
|
return sample |
|
|
|
def _load_modality(self, path, modality): |
|
if modality == 'img': |
|
data = self._load_img(path) |
|
elif modality == 'txt': |
|
data = self._load_txt(path) |
|
else: |
|
raise TypeError("Got unexpected modality: {}".format(modality)) |
|
return data |
|
|
|
def _load_img(self, path): |
|
img = Image.open(path) |
|
if self.transform is not None: |
|
img = self.transform(img) |
|
return img |
|
|
|
def _load_txt(self, path): |
|
with open(path, 'r') as fp: |
|
data = fp.read() |
|
fp.close() |
|
if self.tokenizer is not None: |
|
data = self.tokenizer(data).squeeze() |
|
return data |
|
|
|
def _check(self): |
|
for idx in range(len(self)): |
|
real_name = self.real_folder[idx].split('.') |
|
fake_name = self.fake_folder[idx].split('.') |
|
if fake_name != real_name: |
|
return False |
|
return True |
|
|
|
def _combine_without_prefix(self, folder_path, prefix='.'): |
|
folder = [] |
|
for name in os.listdir(folder_path): |
|
if name[0] == prefix: |
|
continue |
|
folder.append(osp.join(folder_path, name)) |
|
folder.sort() |
|
return folder |
|
|
|
|
|
@torch.no_grad() |
|
def calculate_clip_score(dataloader, model, real_flag, generated_flag): |
|
score_acc = 0. |
|
sample_num = 0. |
|
logit_scale = model.logit_scale.exp() |
|
for batch_data in tqdm(dataloader): |
|
real = batch_data['real'] |
|
real_features = forward_modality(model, real, real_flag) |
|
fake = batch_data['fake'] |
|
fake_features = forward_modality(model, fake, generated_flag) |
|
|
|
|
|
real_features = real_features / real_features.norm(dim=1, keepdim=True).to(torch.float32) |
|
fake_features = fake_features / fake_features.norm(dim=1, keepdim=True).to(torch.float32) |
|
|
|
|
|
|
|
|
|
score = logit_scale * (fake_features * real_features).sum() |
|
score_acc += score |
|
sample_num += real.shape[0] |
|
|
|
return score_acc / sample_num |
|
|
|
|
|
def forward_modality(model, data, flag): |
|
device = next(model.parameters()).device |
|
if flag == 'img': |
|
features = model.encode_image(data.to(device)) |
|
elif flag == 'txt': |
|
features = model.encode_text(data.to(device)) |
|
else: |
|
raise TypeError |
|
return features |
|
|
|
|
|
def main(): |
|
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('--batch-size', type=int, default=50, |
|
help='Batch size to use') |
|
parser.add_argument('--clip-model', type=str, default='ViT-B/32', |
|
help='CLIP model to use') |
|
parser.add_argument('--num-workers', type=int, default=8, |
|
help=('Number of processes to use for data loading. ' |
|
'Defaults to `min(8, num_cpus)`')) |
|
parser.add_argument('--device', type=str, default=None, |
|
help='Device to use. Like cuda, cuda:0 or cpu') |
|
parser.add_argument('--real_flag', type=str, default='img', |
|
help=('The modality of real path. ' |
|
'Default to img')) |
|
parser.add_argument('--generated_flag', type=str, default='txt', |
|
help=('The modality of generated path. ' |
|
'Default to txt')) |
|
parser.add_argument('--real_path', type=str, |
|
help=('Paths to the real images or ' |
|
'to .npz statistic files')) |
|
parser.add_argument('--generated_path', type=str, |
|
help=('Paths to the generated images or ' |
|
'to .npz statistic files')) |
|
args = parser.parse_args() |
|
|
|
if args.device is None: |
|
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu') |
|
else: |
|
device = torch.device(args.device) |
|
|
|
if args.num_workers is None: |
|
try: |
|
num_cpus = len(os.sched_getaffinity(0)) |
|
except AttributeError: |
|
|
|
|
|
|
|
num_cpus = os.cpu_count() |
|
|
|
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 |
|
else: |
|
num_workers = args.num_workers |
|
|
|
print('Loading CLIP model: {}'.format(args.clip_model)) |
|
model, preprocess = clip.load(args.clip_model, device=device) |
|
|
|
dataset = DummyDataset(args.real_path, args.generated_path, |
|
args.real_flag, args.generated_flag, |
|
transform=preprocess, tokenizer=clip.tokenize) |
|
dataloader = DataLoader(dataset, args.batch_size, |
|
num_workers=num_workers, pin_memory=True) |
|
|
|
print('Calculating CLIP Score:') |
|
clip_score = calculate_clip_score(dataloader, model, |
|
args.real_flag, args.generated_flag) |
|
clip_score = clip_score.cpu().item() |
|
print('CLIP Score: ', clip_score) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|