Update EMT.py
Browse files
EMT.py
CHANGED
|
@@ -1,4 +1,212 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import datasets
|
| 4 |
import tarfile
|
|
@@ -34,8 +242,8 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 34 |
|
| 35 |
BUILDER_CONFIGS = [
|
| 36 |
datasets.BuilderConfig(
|
| 37 |
-
name="
|
| 38 |
-
description="
|
| 39 |
version=datasets.Version("1.0.0"),
|
| 40 |
)
|
| 41 |
]
|
|
@@ -75,66 +283,31 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 75 |
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
| 76 |
}
|
| 77 |
|
| 78 |
-
# Based on the requested split, we only download the relevant data
|
| 79 |
-
split = self.config.name # Determine the requested split (train or test)
|
| 80 |
-
|
| 81 |
# Ensure paths are correctly resolved for the requested split
|
| 82 |
-
extracted_paths = dl_manager.download_and_extract(
|
| 83 |
-
image_archives = dl_manager.download_and_extract(
|
| 84 |
-
|
| 85 |
# Ensure annotation paths point to the correct subdirectory
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
return [
|
| 90 |
datasets.SplitGenerator(
|
| 91 |
-
name=datasets.Split.TRAIN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
gen_kwargs={
|
| 93 |
-
"images": dl_manager.iter_archive(
|
| 94 |
-
"annotation_path":
|
| 95 |
},
|
| 96 |
),
|
| 97 |
]
|
| 98 |
|
| 99 |
-
|
| 100 |
-
# def _split_generators(self, dl_manager):
|
| 101 |
-
# """Download (if not cached) and prepare dataset splits."""
|
| 102 |
-
|
| 103 |
-
# image_urls = {
|
| 104 |
-
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
| 105 |
-
# "test": _TEST_IMAGE_ARCHIVE_URL,
|
| 106 |
-
# }
|
| 107 |
-
|
| 108 |
-
# annotation_urls = {
|
| 109 |
-
# "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
| 110 |
-
# "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
| 111 |
-
# }
|
| 112 |
-
|
| 113 |
-
# # Ensure paths are correctly resolved
|
| 114 |
-
# extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
| 115 |
-
# image_archives = dl_manager.download_and_extract(image_urls)
|
| 116 |
-
|
| 117 |
-
# # ✅ Ensure annotation paths point to the correct subdirectory
|
| 118 |
-
# train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
| 119 |
-
# test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
| 120 |
-
|
| 121 |
-
# return [
|
| 122 |
-
# datasets.SplitGenerator(
|
| 123 |
-
# name=datasets.Split.TRAIN,
|
| 124 |
-
# gen_kwargs={
|
| 125 |
-
# "images": dl_manager.iter_archive(image_archives["train"]),
|
| 126 |
-
# "annotation_path": train_annotation_path, # ✅ Corrected path
|
| 127 |
-
# },
|
| 128 |
-
# ),
|
| 129 |
-
# datasets.SplitGenerator(
|
| 130 |
-
# name=datasets.Split.TEST,
|
| 131 |
-
# gen_kwargs={
|
| 132 |
-
# "images": dl_manager.iter_archive(image_archives["test"]),
|
| 133 |
-
# "annotation_path": test_annotation_path, # ✅ Corrected path
|
| 134 |
-
# },
|
| 135 |
-
# ),
|
| 136 |
-
# ]
|
| 137 |
-
|
| 138 |
def _generate_examples(self, images, annotation_path):
|
| 139 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
| 140 |
|
|
@@ -205,5 +378,3 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 205 |
"objects": annotations[key],
|
| 206 |
}
|
| 207 |
idx += 1
|
| 208 |
-
|
| 209 |
-
|
|
|
|
| 1 |
|
| 2 |
+
# import os
|
| 3 |
+
# import datasets
|
| 4 |
+
# import tarfile
|
| 5 |
+
|
| 6 |
+
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
| 7 |
+
# _LICENSE = "CC-BY-SA 4.0"
|
| 8 |
+
# _CITATION = """
|
| 9 |
+
# @article{EMTdataset2025,
|
| 10 |
+
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
| 11 |
+
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
| 12 |
+
# year={2025},
|
| 13 |
+
# eprint={2502.19260},
|
| 14 |
+
# archivePrefix={arXiv},
|
| 15 |
+
# primaryClass={cs.CV},
|
| 16 |
+
# url={https://arxiv.org/abs/2502.19260}
|
| 17 |
+
# }
|
| 18 |
+
# """
|
| 19 |
+
|
| 20 |
+
# _DESCRIPTION = """\
|
| 21 |
+
# A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
| 22 |
+
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
| 23 |
+
# """
|
| 24 |
+
|
| 25 |
+
# _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
| 26 |
+
# _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
| 27 |
+
|
| 28 |
+
# _TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
| 29 |
+
# _TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# class EMT(datasets.GeneratorBasedBuilder):
|
| 33 |
+
# """EMT dataset."""
|
| 34 |
+
|
| 35 |
+
# BUILDER_CONFIGS = [
|
| 36 |
+
# datasets.BuilderConfig(
|
| 37 |
+
# name="full_size",
|
| 38 |
+
# description="All images are in their original size.",
|
| 39 |
+
# version=datasets.Version("1.0.0"),
|
| 40 |
+
# )
|
| 41 |
+
# ]
|
| 42 |
+
|
| 43 |
+
# def _info(self):
|
| 44 |
+
# return datasets.DatasetInfo(
|
| 45 |
+
# description=_DESCRIPTION,
|
| 46 |
+
# features=datasets.Features(
|
| 47 |
+
# {
|
| 48 |
+
# "image": datasets.Image(),
|
| 49 |
+
# "objects": datasets.Sequence(
|
| 50 |
+
# {
|
| 51 |
+
# "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
| 52 |
+
# "class_id": datasets.Value("int32"),
|
| 53 |
+
# "track_id": datasets.Value("int32"),
|
| 54 |
+
# "class_name": datasets.Value("string"),
|
| 55 |
+
# }
|
| 56 |
+
# ),
|
| 57 |
+
# }
|
| 58 |
+
# ),
|
| 59 |
+
# supervised_keys=None,
|
| 60 |
+
# homepage=_HOMEPAGE,
|
| 61 |
+
# license=_LICENSE,
|
| 62 |
+
# citation=_CITATION,
|
| 63 |
+
# )
|
| 64 |
+
|
| 65 |
+
# def _split_generators(self, dl_manager):
|
| 66 |
+
# """Download (if not cached) and prepare dataset splits."""
|
| 67 |
+
|
| 68 |
+
# image_urls = {
|
| 69 |
+
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
| 70 |
+
# "test": _TEST_IMAGE_ARCHIVE_URL,
|
| 71 |
+
# }
|
| 72 |
+
|
| 73 |
+
# annotation_urls = {
|
| 74 |
+
# "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
| 75 |
+
# "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
| 76 |
+
# }
|
| 77 |
+
|
| 78 |
+
# # Based on the requested split, we only download the relevant data
|
| 79 |
+
# split = self.config.name # Determine the requested split (train or test)
|
| 80 |
+
|
| 81 |
+
# # Ensure paths are correctly resolved for the requested split
|
| 82 |
+
# extracted_paths = dl_manager.download_and_extract({split: annotation_urls[split]})
|
| 83 |
+
# image_archives = dl_manager.download_and_extract({split: image_urls[split]})
|
| 84 |
+
|
| 85 |
+
# # Ensure annotation paths point to the correct subdirectory
|
| 86 |
+
# annotation_path = os.path.join(extracted_paths[split], "annotations", split)
|
| 87 |
+
# image_path = image_archives[split]
|
| 88 |
+
|
| 89 |
+
# return [
|
| 90 |
+
# datasets.SplitGenerator(
|
| 91 |
+
# name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
|
| 92 |
+
# gen_kwargs={
|
| 93 |
+
# "images": dl_manager.iter_archive(image_path),
|
| 94 |
+
# "annotation_path": annotation_path,
|
| 95 |
+
# },
|
| 96 |
+
# ),
|
| 97 |
+
# ]
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# # def _split_generators(self, dl_manager):
|
| 101 |
+
# # """Download (if not cached) and prepare dataset splits."""
|
| 102 |
+
|
| 103 |
+
# # image_urls = {
|
| 104 |
+
# # "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
| 105 |
+
# # "test": _TEST_IMAGE_ARCHIVE_URL,
|
| 106 |
+
# # }
|
| 107 |
+
|
| 108 |
+
# # annotation_urls = {
|
| 109 |
+
# # "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
| 110 |
+
# # "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
| 111 |
+
# # }
|
| 112 |
+
|
| 113 |
+
# # # Ensure paths are correctly resolved
|
| 114 |
+
# # extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
| 115 |
+
# # image_archives = dl_manager.download_and_extract(image_urls)
|
| 116 |
+
|
| 117 |
+
# # # ✅ Ensure annotation paths point to the correct subdirectory
|
| 118 |
+
# # train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
| 119 |
+
# # test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
| 120 |
+
|
| 121 |
+
# # return [
|
| 122 |
+
# # datasets.SplitGenerator(
|
| 123 |
+
# # name=datasets.Split.TRAIN,
|
| 124 |
+
# # gen_kwargs={
|
| 125 |
+
# # "images": dl_manager.iter_archive(image_archives["train"]),
|
| 126 |
+
# # "annotation_path": train_annotation_path, # ✅ Corrected path
|
| 127 |
+
# # },
|
| 128 |
+
# # ),
|
| 129 |
+
# # datasets.SplitGenerator(
|
| 130 |
+
# # name=datasets.Split.TEST,
|
| 131 |
+
# # gen_kwargs={
|
| 132 |
+
# # "images": dl_manager.iter_archive(image_archives["test"]),
|
| 133 |
+
# # "annotation_path": test_annotation_path, # ✅ Corrected path
|
| 134 |
+
# # },
|
| 135 |
+
# # ),
|
| 136 |
+
# # ]
|
| 137 |
+
|
| 138 |
+
# def _generate_examples(self, images, annotation_path):
|
| 139 |
+
# """Generate dataset examples by matching images to their corresponding annotations."""
|
| 140 |
+
|
| 141 |
+
# annotations = {}
|
| 142 |
+
|
| 143 |
+
# # Determine whether we're processing train or test split
|
| 144 |
+
# if "train" in annotation_path:
|
| 145 |
+
# annotation_split = "train"
|
| 146 |
+
# elif "test" in annotation_path:
|
| 147 |
+
# annotation_split = "test"
|
| 148 |
+
# else:
|
| 149 |
+
# raise ValueError(f"Unknown annotation path: {annotation_path}")
|
| 150 |
+
|
| 151 |
+
# ann_dir = annotation_path
|
| 152 |
+
|
| 153 |
+
# print(f"Extracted annotations path: {annotation_path}")
|
| 154 |
+
# print(f"Looking for annotations in: {ann_dir}")
|
| 155 |
+
|
| 156 |
+
# # Check if annotation directory exists
|
| 157 |
+
# if not os.path.exists(ann_dir):
|
| 158 |
+
# raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
|
| 159 |
+
|
| 160 |
+
# # Extract annotation files and read their contents
|
| 161 |
+
# for ann_file in os.listdir(ann_dir):
|
| 162 |
+
# video_name = os.path.splitext(ann_file)[0] # Extract video folder name from file
|
| 163 |
+
# ann_path = os.path.join(ann_dir, ann_file)
|
| 164 |
+
|
| 165 |
+
# if os.path.isdir(ann_path):
|
| 166 |
+
# continue # Skip directories
|
| 167 |
+
|
| 168 |
+
# print("Processing annotation file:", ann_path)
|
| 169 |
+
|
| 170 |
+
# with open(ann_path, "r", encoding="utf-8") as f:
|
| 171 |
+
# for line in f:
|
| 172 |
+
# parts = line.strip().split()
|
| 173 |
+
# if len(parts) < 8:
|
| 174 |
+
# continue
|
| 175 |
+
|
| 176 |
+
# frame_id, track_id, class_name = parts[:3]
|
| 177 |
+
# bbox = list(map(float, parts[4:8]))
|
| 178 |
+
# class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
| 179 |
+
# img_name = f"{frame_id}.jpg"
|
| 180 |
+
|
| 181 |
+
# # Store annotation in a dictionary
|
| 182 |
+
# key = f"{video_name}/{img_name}"
|
| 183 |
+
# if key not in annotations:
|
| 184 |
+
# annotations[key] = []
|
| 185 |
+
|
| 186 |
+
# annotations[key].append(
|
| 187 |
+
# {
|
| 188 |
+
# "bbox": bbox,
|
| 189 |
+
# "class_id": class_id,
|
| 190 |
+
# "track_id": int(track_id),
|
| 191 |
+
# "class_name": class_name,
|
| 192 |
+
# }
|
| 193 |
+
# )
|
| 194 |
+
|
| 195 |
+
# # Yield dataset entries
|
| 196 |
+
# idx = 0
|
| 197 |
+
# for file_path, file_obj in images:
|
| 198 |
+
# img_name = os.path.basename(file_path)
|
| 199 |
+
# video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
| 200 |
+
# key = f"{video_name}/{img_name}"
|
| 201 |
+
|
| 202 |
+
# if key in annotations:
|
| 203 |
+
# yield idx, {
|
| 204 |
+
# "image": {"path": file_path, "bytes": file_obj.read()},
|
| 205 |
+
# "objects": annotations[key],
|
| 206 |
+
# }
|
| 207 |
+
# idx += 1
|
| 208 |
+
|
| 209 |
+
|
| 210 |
import os
|
| 211 |
import datasets
|
| 212 |
import tarfile
|
|
|
|
| 242 |
|
| 243 |
BUILDER_CONFIGS = [
|
| 244 |
datasets.BuilderConfig(
|
| 245 |
+
name="default",
|
| 246 |
+
description="Dataset with train and test splits",
|
| 247 |
version=datasets.Version("1.0.0"),
|
| 248 |
)
|
| 249 |
]
|
|
|
|
| 283 |
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
| 284 |
}
|
| 285 |
|
|
|
|
|
|
|
|
|
|
| 286 |
# Ensure paths are correctly resolved for the requested split
|
| 287 |
+
extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
| 288 |
+
image_archives = dl_manager.download_and_extract(image_urls)
|
| 289 |
+
|
| 290 |
# Ensure annotation paths point to the correct subdirectory
|
| 291 |
+
train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
| 292 |
+
test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
| 293 |
|
| 294 |
return [
|
| 295 |
datasets.SplitGenerator(
|
| 296 |
+
name=datasets.Split.TRAIN,
|
| 297 |
+
gen_kwargs={
|
| 298 |
+
"images": dl_manager.iter_archive(image_archives["train"]),
|
| 299 |
+
"annotation_path": train_annotation_path,
|
| 300 |
+
},
|
| 301 |
+
),
|
| 302 |
+
datasets.SplitGenerator(
|
| 303 |
+
name=datasets.Split.TEST,
|
| 304 |
gen_kwargs={
|
| 305 |
+
"images": dl_manager.iter_archive(image_archives["test"]),
|
| 306 |
+
"annotation_path": test_annotation_path,
|
| 307 |
},
|
| 308 |
),
|
| 309 |
]
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
def _generate_examples(self, images, annotation_path):
|
| 312 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
| 313 |
|
|
|
|
| 378 |
"objects": annotations[key],
|
| 379 |
}
|
| 380 |
idx += 1
|
|
|
|
|
|