Update EMT.py
Browse files
EMT.py
CHANGED
|
@@ -3,7 +3,6 @@
|
|
| 3 |
import os
|
| 4 |
import datasets
|
| 5 |
|
| 6 |
-
|
| 7 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
| 8 |
|
| 9 |
_LICENSE = "CC-BY-SA 4.0"
|
|
@@ -22,11 +21,11 @@ _CITATION = """
|
|
| 22 |
|
| 23 |
_DESCRIPTION = """\
|
| 24 |
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
| 25 |
-
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection
|
| 26 |
"""
|
| 27 |
|
| 28 |
# Annotation repository
|
| 29 |
-
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations
|
| 30 |
|
| 31 |
# Tar file URLs for images
|
| 32 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
|
@@ -68,55 +67,57 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 68 |
|
| 69 |
def _split_generators(self, dl_manager):
|
| 70 |
"""Download train/test images and annotations."""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
-
|
|
|
|
| 76 |
annotation_paths = {
|
| 77 |
-
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train
|
| 78 |
-
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test
|
| 79 |
}
|
| 80 |
-
|
| 81 |
return [
|
| 82 |
datasets.SplitGenerator(
|
| 83 |
name=datasets.Split.TRAIN,
|
| 84 |
gen_kwargs={
|
| 85 |
-
"images": dl_manager.iter_archive(
|
| 86 |
"annotation_path": annotation_paths["train"],
|
| 87 |
},
|
| 88 |
),
|
| 89 |
datasets.SplitGenerator(
|
| 90 |
name=datasets.Split.TEST,
|
| 91 |
gen_kwargs={
|
| 92 |
-
"images": dl_manager.iter_archive(
|
| 93 |
"annotation_path": annotation_paths["test"],
|
| 94 |
},
|
| 95 |
),
|
| 96 |
]
|
| 97 |
|
| 98 |
-
|
| 99 |
def _generate_examples(self, images, annotation_path):
|
| 100 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
| 101 |
|
| 102 |
# Load ALL annotations into memory before iterating over images
|
| 103 |
annotations = {}
|
| 104 |
-
|
| 105 |
for ann_file in os.listdir(annotation_path): # Iterate over all annotation files
|
| 106 |
-
video_name = os.path.splitext(ann_file)[0] # Extract video folder name
|
| 107 |
ann_path = os.path.join(annotation_path, ann_file)
|
| 108 |
-
|
|
|
|
| 109 |
with open(ann_path, "r", encoding="utf-8") as f:
|
| 110 |
for line in f:
|
| 111 |
parts = line.strip().split()
|
| 112 |
if len(parts) < 8:
|
| 113 |
continue
|
| 114 |
-
|
| 115 |
frame_id, track_id, class_name = parts[:3]
|
| 116 |
bbox = list(map(float, parts[4:8]))
|
| 117 |
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
| 118 |
img_name = f"{frame_id}.jpg"
|
| 119 |
-
|
| 120 |
# Store annotation in a simple dictionary
|
| 121 |
key = f"{video_name}/{img_name}"
|
| 122 |
if key not in annotations:
|
|
@@ -130,14 +131,14 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 130 |
"class_name": class_name,
|
| 131 |
}
|
| 132 |
)
|
| 133 |
-
|
| 134 |
# Yield dataset entries
|
| 135 |
idx = 0
|
| 136 |
for file_path, file_obj in images:
|
| 137 |
img_name = os.path.basename(file_path)
|
| 138 |
video_name = os.path.basename(os.path.dirname(file_path))
|
| 139 |
key = f"{video_name}/{img_name}" # Match image to preloaded annotations
|
| 140 |
-
|
| 141 |
if key in annotations:
|
| 142 |
yield idx, {
|
| 143 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
|
|
|
| 3 |
import os
|
| 4 |
import datasets
|
| 5 |
|
|
|
|
| 6 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
| 7 |
|
| 8 |
_LICENSE = "CC-BY-SA 4.0"
|
|
|
|
| 21 |
|
| 22 |
_DESCRIPTION = """\
|
| 23 |
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
| 24 |
+
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
| 25 |
"""
|
| 26 |
|
| 27 |
# Annotation repository
|
| 28 |
+
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"
|
| 29 |
|
| 30 |
# Tar file URLs for images
|
| 31 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
|
|
|
| 67 |
|
| 68 |
def _split_generators(self, dl_manager):
|
| 69 |
"""Download train/test images and annotations."""
|
| 70 |
+
|
| 71 |
+
# Download and extract images
|
| 72 |
+
image_paths = {
|
| 73 |
+
"train": dl_manager.download_and_extract(_TRAIN_IMAGE_ARCHIVE_URL),
|
| 74 |
+
"test": dl_manager.download_and_extract(_TEST_IMAGE_ARCHIVE_URL),
|
| 75 |
}
|
| 76 |
+
|
| 77 |
+
# Download annotations (extracted automatically)
|
| 78 |
annotation_paths = {
|
| 79 |
+
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train"),
|
| 80 |
+
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test"),
|
| 81 |
}
|
| 82 |
+
|
| 83 |
return [
|
| 84 |
datasets.SplitGenerator(
|
| 85 |
name=datasets.Split.TRAIN,
|
| 86 |
gen_kwargs={
|
| 87 |
+
"images": dl_manager.iter_archive(image_paths["train"]),
|
| 88 |
"annotation_path": annotation_paths["train"],
|
| 89 |
},
|
| 90 |
),
|
| 91 |
datasets.SplitGenerator(
|
| 92 |
name=datasets.Split.TEST,
|
| 93 |
gen_kwargs={
|
| 94 |
+
"images": dl_manager.iter_archive(image_paths["test"]),
|
| 95 |
"annotation_path": annotation_paths["test"],
|
| 96 |
},
|
| 97 |
),
|
| 98 |
]
|
| 99 |
|
|
|
|
| 100 |
def _generate_examples(self, images, annotation_path):
|
| 101 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
| 102 |
|
| 103 |
# Load ALL annotations into memory before iterating over images
|
| 104 |
annotations = {}
|
| 105 |
+
|
| 106 |
for ann_file in os.listdir(annotation_path): # Iterate over all annotation files
|
|
|
|
| 107 |
ann_path = os.path.join(annotation_path, ann_file)
|
| 108 |
+
video_name = os.path.splitext(ann_file)[0] # Extract video folder name
|
| 109 |
+
|
| 110 |
with open(ann_path, "r", encoding="utf-8") as f:
|
| 111 |
for line in f:
|
| 112 |
parts = line.strip().split()
|
| 113 |
if len(parts) < 8:
|
| 114 |
continue
|
| 115 |
+
|
| 116 |
frame_id, track_id, class_name = parts[:3]
|
| 117 |
bbox = list(map(float, parts[4:8]))
|
| 118 |
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
| 119 |
img_name = f"{frame_id}.jpg"
|
| 120 |
+
|
| 121 |
# Store annotation in a simple dictionary
|
| 122 |
key = f"{video_name}/{img_name}"
|
| 123 |
if key not in annotations:
|
|
|
|
| 131 |
"class_name": class_name,
|
| 132 |
}
|
| 133 |
)
|
| 134 |
+
|
| 135 |
# Yield dataset entries
|
| 136 |
idx = 0
|
| 137 |
for file_path, file_obj in images:
|
| 138 |
img_name = os.path.basename(file_path)
|
| 139 |
video_name = os.path.basename(os.path.dirname(file_path))
|
| 140 |
key = f"{video_name}/{img_name}" # Match image to preloaded annotations
|
| 141 |
+
|
| 142 |
if key in annotations:
|
| 143 |
yield idx, {
|
| 144 |
"image": {"path": file_path, "bytes": file_obj.read()},
|