--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 24500165181 num_examples: 80462898 download_size: 14400389487 dataset_size: 24500165181 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "bert_pretrain_datasets" This dataset is essentially a concatenation of the training set of the English Wikipedia (wikipedia.20220301.en.train) and the Book Corpus (bookcorpus.train). This is exactly how I get this dataset: ``` from datasets import load_dataset, concatenate_datasets, load_from_disk cache_dir = "/data/haob2/cache/" # book corpus bookcorpus = load_dataset("bookcorpus", split="train", cache_dir=cache_dir) # english wikipedia wiki = load_dataset("wikipedia", "20220301.en", split="train", cache_dir=cache_dir) wiki = wiki.remove_columns([col for col in wiki.column_names if col != "text"]) # # concatenation concat = concatenate_datasets([bookcorpus, wiki]) concat.push_to_hub("JackBAI/bert_pretrain_datasets") ``` Note that this is a naive reproduction of the dataset that BERT is using. We believe the official BERT checkpoint is pretrained on a much more engineered dataset.