File size: 1,213 Bytes
412e6ec c5cacb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 24500165181
num_examples: 80462898
download_size: 14400389487
dataset_size: 24500165181
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "bert_pretrain_datasets"
This dataset is essentially a concatenation of the training set of the English Wikipedia (wikipedia.20220301.en.train) and the Book Corpus (bookcorpus.train).
This is exactly how I get this dataset:
```
from datasets import load_dataset, concatenate_datasets, load_from_disk
cache_dir = "/data/haob2/cache/"
# book corpus
bookcorpus = load_dataset("bookcorpus", split="train", cache_dir=cache_dir)
# english wikipedia
wiki = load_dataset("wikipedia", "20220301.en", split="train", cache_dir=cache_dir)
wiki = wiki.remove_columns([col for col in wiki.column_names if col != "text"])
# # concatenation
concat = concatenate_datasets([bookcorpus, wiki])
concat.push_to_hub("JackBAI/bert_pretrain_datasets")
```
Note that this is a naive reproduction of the dataset that BERT is using. We believe the official BERT checkpoint is pretrained on a much more engineered dataset.
|