|
import logging |
|
import pprint |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
from src.backend.manage_requests import ( |
|
FAILED_STATUS, |
|
FINISHED_STATUS, |
|
PENDING_STATUS, |
|
RUNNING_STATUS, |
|
check_completed_evals, |
|
get_eval_requests, |
|
set_eval_request, |
|
) |
|
from src.backend.run_eval_suite_lighteval import run_evaluation |
|
from src.backend.sort_queue import sort_models_by_priority |
|
from src.envs import ( |
|
ACCELERATOR, |
|
API, |
|
EVAL_REQUESTS_PATH_BACKEND, |
|
EVAL_RESULTS_PATH_BACKEND, |
|
LIMIT, |
|
QUEUE_REPO, |
|
REGION, |
|
RESULTS_REPO, |
|
TASKS_LIGHTEVAL, |
|
TOKEN, |
|
VENDOR, |
|
) |
|
from src.logging import setup_logger |
|
|
|
|
|
logging.getLogger("openai").setLevel(logging.WARNING) |
|
|
|
logger = setup_logger(__name__) |
|
|
|
|
|
pp = pprint.PrettyPrinter(width=80) |
|
|
|
snapshot_download( |
|
repo_id=RESULTS_REPO, |
|
revision="main", |
|
local_dir=EVAL_RESULTS_PATH_BACKEND, |
|
repo_type="dataset", |
|
max_workers=60, |
|
token=TOKEN, |
|
) |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, |
|
revision="main", |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
repo_type="dataset", |
|
max_workers=60, |
|
token=TOKEN, |
|
) |
|
|
|
|
|
def run_auto_eval(): |
|
current_pending_status = [PENDING_STATUS] |
|
|
|
|
|
|
|
check_completed_evals( |
|
api=API, |
|
checked_status=RUNNING_STATUS, |
|
completed_status=FINISHED_STATUS, |
|
failed_status=FAILED_STATUS, |
|
hf_repo=QUEUE_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
hf_repo_results=RESULTS_REPO, |
|
local_dir_results=EVAL_RESULTS_PATH_BACKEND, |
|
) |
|
|
|
|
|
eval_requests = get_eval_requests( |
|
job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND |
|
) |
|
|
|
eval_requests = sort_models_by_priority(api=API, models=eval_requests) |
|
|
|
logger.info(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") |
|
|
|
if len(eval_requests) == 0: |
|
return |
|
|
|
eval_request = eval_requests[0] |
|
logger.info(pp.pformat(eval_request)) |
|
|
|
set_eval_request( |
|
api=API, |
|
eval_request=eval_request, |
|
set_to_status=RUNNING_STATUS, |
|
hf_repo=QUEUE_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
instance_size, instance_type = "x4", "intel-icl" |
|
logger.info( |
|
f"Starting Evaluation of {eval_request.json_filepath} on Inference endpoints: {instance_size} {instance_type}" |
|
) |
|
|
|
run_evaluation( |
|
eval_request=eval_request, |
|
task_names=TASKS_LIGHTEVAL, |
|
local_dir=EVAL_RESULTS_PATH_BACKEND, |
|
batch_size=1, |
|
accelerator=ACCELERATOR, |
|
region=REGION, |
|
vendor=VENDOR, |
|
instance_size=instance_size, |
|
instance_type=instance_type, |
|
limit=LIMIT, |
|
) |
|
|
|
logger.info( |
|
f"Completed Evaluation of {eval_request.json_filepath} on Inference endpoints: {instance_size} {instance_type}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
run_auto_eval() |
|
|